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1. The crab species Leptograpsus variegatus has two colour forms, blue and orange. Fifty crabs of each
colour form and both sexes were collected at Fremantle, Western Australia, and various measurements
were taken on each crab. The variables in the data file are as follows:

• sp species (B is blue and O is orange, a letter O)
• sex (male, M or female, F)
• index serial number of each crab within species and sex
• FL frontal lobe size
• RW rear width
• CL carapace length
• CW carapace width
• BD body depth

All five of the measurements are in millimetres.

Some of the data file is shown in Figure 2, and the data file is stored in crabs.txt in the same folder
that R Studio is running in.

(a) [2] What code would read the data in the file into a dataframe called crabs and display it?

My answer:

In Figure 2, the data values are each rather oddly separated by a single colon, so read_delim
with that as separator:
crabs <- read_delim("crabs.txt", ":")

## Rows: 200 Columns: 8
## -- Column specification --------------------------------------------------------
## Delimiter: ":"
## chr (2): sp, sex
## dbl (6): index, FL, RW, CL, CW, BD
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
crabs

## # A tibble: 200 x 8
## sp sex index FL RW CL CW BD
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 B M 1 8.1 6.7 16.1 19 7
## 2 B M 2 8.8 7.7 18.1 20.8 7.4
## 3 B M 3 9.2 7.8 19 22.4 7.7
## 4 B M 4 9.6 7.9 20.1 23.1 8.2
## 5 B M 5 9.8 8 20.3 23 8.2
## 6 B M 6 10.8 9 23 26.5 9.8
## 7 B M 7 11.1 9.9 23.8 27.1 9.8
## 8 B M 8 11.6 9.1 24.5 28.4 10.4
## 9 B M 9 11.8 9.6 24.2 27.8 9.7
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## 10 B M 10 11.8 10.5 25.2 29.3 10.3
## # ... with 190 more rows

or, without the separator, but with explanation:
read_delim("crabs.txt")

## Rows: 200 Columns: 8
## -- Column specification --------------------------------------------------------
## Delimiter: ":"
## chr (2): sp, sex
## dbl (6): index, FL, RW, CL, CW, BD
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.

## # A tibble: 200 x 8
## sp sex index FL RW CL CW BD
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 B M 1 8.1 6.7 16.1 19 7
## 2 B M 2 8.8 7.7 18.1 20.8 7.4
## 3 B M 3 9.2 7.8 19 22.4 7.7
## 4 B M 4 9.6 7.9 20.1 23.1 8.2
## 5 B M 5 9.8 8 20.3 23 8.2
## 6 B M 6 10.8 9 23 26.5 9.8
## 7 B M 7 11.1 9.9 23.8 27.1 9.8
## 8 B M 8 11.6 9.1 24.5 28.4 10.4
## 9 B M 9 11.8 9.6 24.2 27.8 9.7
## 10 B M 10 11.8 10.5 25.2 29.3 10.3
## # ... with 190 more rows

This will work because (you may assert) read_delim will guess that the data values are separated
by colons. My output reveals that this assertion is correct (in the third line).

One point for using read_delim without the delimiter and without an explanation of why it
will work. One point off for a large mistake and half a point per small one, down to a total of 1
if you got something substantial correct and a total of 0.5 if you showed any progress towards
working code (at the grader’s discretion).

(b) [3] What code would obtain the number of observations in each group, and the mean and SD of
carapace length, for each combination of species and sex?

My answer:

A group_by and summarize, with both species and sex going into the group_by, and an n() in
the summarize to count the number of observations in each group:
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crabs %>%
group_by(sp, sex) %>%
summarize(n = n(), mean_length = mean(CL), sd_length = sd(CL))

## `summarise()` has grouped output by 'sp'. You can override using the `.groups`
## argument.

## # A tibble: 4 x 5
## # Groups: sp [2]
## sp sex n mean_length sd_length
## <chr> <chr> <int> <dbl> <dbl>
## 1 B F 50 28.1 5.92
## 2 B M 50 32.0 7.31
## 3 O F 50 34.6 5.84
## 4 O M 50 33.7 7.61

One point for getting the group_by line correct, and two points for getting the summarize line
correct; minus a half point for any errors.

(c) [4] What code would make a suitable graph of rear width for each species and sex? What is the
name of this type of graph?

My answer:

Two categorical variables and one quantitative one, so a grouped boxplot. I’m not particular
about which categorical variable is x and which is fill, so they can be either way around:
ggplot(crabs, aes(x = sp, fill = sex, y = RW)) + geom_boxplot()
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The word “grouped” needs to be there; it’s not just a simple side-by-side boxplot.

Three points for the code (minus one per error), one point for “grouped boxplot”. In the
code, minus a half point for errors. I suppose half a point if you say “boxplot” without saying
“grouped”.

The point of any kind of boxplot is to compare groups, so the four individual boxes need to be
side by side. If you are careful, you can do it with facets:
ggplot(crabs, aes(x = sex, y = RW)) + geom_boxplot() + facet_wrap(~sp)
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Since the idea is to compare groups, you need to have the same vertical scale for both facets, ie.
scales = "free" is an error here. But code for the graph I just made, or with sex as facets
and sp as x, is full credit as long as you describe it as a grouped boxplot.

(d) [3] What code would produce histograms of body depth for the two species separately, laid out above
and below each other so that you can compare the distributions?

My answer:

This one can only be facetted:
ggplot(crabs, aes(x = BD)) + geom_histogram(bins = 8) + facet_wrap(~sp, ncol = 1)
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Minus one per error. The ncol is necessary because otherwise the two graphs will be left and
right (and you won’t be able to compare the distributions). Likewise, as in my variation in the
previous part, you do not want a scales = "free", for the same reason as there. You need
some number of bins in the geom_histogram; you can actually use a few more than normal
because the number you specify is shared between the two histograms. So any number of bins
between, say, 5 and 20 is fine by me, but have one.

If you have mastered facet_grid, that also works, but the coding is a bit different:
ggplot(crabs, aes(x = BD)) + geom_histogram(bins = 8) + facet_grid(sp ~ .)
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In the facet_grid, the first thing is the categorical variable that makes the y direction, and the
second is the one that makes the x-direction. If either of these is empty (here the x), use a dot.
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(e) [2] How many crabs are there with carapace length greater than 40 for each species? What code
would determine this?

My answer:
crabs %>%

filter(CL>40) %>%
count(sp)

## # A tibble: 2 x 2
## sp n
## <chr> <int>
## 1 B 8
## 2 O 19

There can be some credit for something else that will work, such as this:
crabs %>%

count(sp, CL>40)

## # A tibble: 4 x 3
## sp `CL > 40` n
## <chr> <lgl> <int>
## 1 B FALSE 92
## 2 B TRUE 8
## 3 O FALSE 81
## 4 O TRUE 19

but this is not as good because it also displays the counts of crabs with carapace length less
than 40, which you don’t want. One point for this. If you rescue yourself, you can get both
points, eg:
crabs %>%

count(sp, CL>40) %>%
filter(`CL > 40`)

## # A tibble: 2 x 3
## sp `CL > 40` n
## <chr> <lgl> <int>
## 1 B TRUE 8
## 2 O TRUE 19

remembering to put the thing inside the filter in backticks because it is not actually a legal
column name (minus a half point if you get this without the backticks). But it is easier to do
the filter first.



STAC32 Final Exam Page 9

(f) [3] Out of the crabs with carapace length greater than 40, what is the smallest rear width, categorized
by species? What code would calculate this?

My answer:
crabs %>%

filter(CL>40) %>%
group_by(sp) %>%
summarize(small_rw = min(RW))

## # A tibble: 2 x 2
## sp small_rw
## <chr> <dbl>
## 1 B 13.5
## 2 O 13.7

A point for each line. If you do the same thing as in the previous part, replacing the count there
with a group_by and summarize, the grader will try to give you credit here (the guidelines are
whether you have made any additional errors here, and whether by making an error earlier you
have made this part easier).

2. Hemophilia is a bleeding disorder in which the blood does not clot properly. This can lead to bleeding
that does not stop. Blood contains many proteins called clotting factors that can help to stop bleeding.

One type of hemophilia is called Hemophilia A. In a study, 75 women were classified according to whether
they do not have hemophilia A (30 women; “normal”) or whether they do have hemophilia A (45 women;
“carrier”). This is in the column called gr. Two variables were measured, called AHFactivity and
AHFantigen, and the research question was whether either of them have any diagnostic value (meaning,
whether either of them in any way distinguish women with hemophilia A from women without hemophilia
A.)

Some of the data are shown in Figure 3.

(a) [2] Describe in words a graph that would help to determine whether either of the measured variables
help to distinguish women with hemophilia A from women without.

My answer:

With two quantitative variables and one categorical, the graph we know is a scatterplot, with
the points distinguished by colour. Here, that means a scatterplot of AHFactivity against
AHFantigen (either way around, since neither is a response), with the points coloured according
to the value of gr.

Points: a half point for saying “scatterplot”, a half for saying which variables go on the scatterplot
(by name), a half for saying “distinguished by colour”, a half for saying (by name) which variable
is used for distinguishing by colour.

A second-best example would call for boxplots for each measured variable against gr individually.
This is second best because the distinction between “normal” and “carrier” women might depend
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on a combination of the two measured variables (eg. them both being high together), which
wouldn’t show up (or not as well) on individual boxplots. One point for a suitably complete
description of the boxplots you would draw (complete enough that I could code it from your
description). Half a point for “boxplot” plus some non-trivial description of the boxplot(s) you
would draw.

It is perhaps a good idea to read ahead to the next part and think about how you are going to
answer that based on the graph you are proposing.

Note that the question asks for a description in words, not for code. This was on purpose, since
the previous question asks for code, so this question is getting at whether you can describe what
you think is appropriate.

(b) [2] Explain briefly how you would use your graph of the previous part to determine whether either of
the two measured variables distinguish women with hemophilia A from women without hemophilia
A. If you find it helpful, use an example or a sketch of the kind of graph you might get to support
your explanation.

My answer:

Your scatterplot will have a collection of red and blue points. If they are all mixed up, then
neither of the two measured variables distinguish the two groups of women, but if (say) the
red points are mostly in one part of the graph, then the part of the graph they are in tells you
about which variable(s) distinguish them. For example, if the red points are mostly in the top
right, that would mean that this group is distinguished by both variables being high. (If they
are mostly on the right, that would mean that the variable on the x-axis is high for them, and
so on.)

You could draw a scatterplot (axes labelled) with some Os and Xs in different parts of the graph
to achieve the same purpose. Some students used colour (I think) to distinguish the two groups,
but the exam was scanned in black and white, so I couldn’t be sure. If you seem to have drawn
an example plot that seems to have different coloured points in different places, along with some
sensible explanation, you should have two points.

You don’t have all the data, so you will have to make a guess about what the plot might look
like. Any guess is fine, to illustrate what you are looking for.

If you drew boxplots, you can draw some example plots to illustrate the sort of thing that might
happen, eg. pick one of the variables to be on the y-axis of your plot (doesn’t matter which, but
label it) and draw two boxplots with different medians. In that case, you have it a bit easier
here, but you will have lost at least a point above, because a scatterplot is better than a pair of
boxplots (see above).

Points: two points for anything that completely answers the question (there are many possibili-
ties), one for an answer that gets part of the way but is missing important details.

Extra: the scatterplot actually looks like this:
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ggplot(hemophilia, aes(x = AHFactivity, y = AHFantigen, colour = gr)) + geom_point()
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The normal women are actually at the bottom right, so are distinguished by having high
AHFactivity and low AHFantigen. Of course, you won’t know this, so I am asking you to
imagine the kind of thing that might happen. This plot also shows you why having the second
dimension is valuable: the normal women are a bit lower on AHFantigen and a bit higher an
AHFactivity, but there is a lot of overlap in both cases, so neither of the two boxplots will
show much of a difference. On the scatterplot, though, it’s pretty clear where the blue dots are
relative to the red ones, most of the time. What has happened is that within each gr group, the
two measured variables are associated, so if you guessed to add regression lines to each cloud of
points (a red line and a blue line), that will also show the difference between the two groups.
You might phrase that differently, though: something like “for any AHFactivity, AHFantigen
is higher for the carrier women than for the normal women”.

This kind of data responds well to discriminant analysis (which we will see in D29). This is the
technique of choice when you want to find out what makes groups different, particularly when
you have several quantitative variables, and the answer might have to do with combinations of
them. But here, I wanted to give you a two-sample question, so I made one out of this data.
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(c) [3] The researchers decided to use AHFactivity to compare the two groups of women. A graph is
shown in Figure 4. Two possible analyses are shown in Figures 5 and 6. Which analysis do you
prefer and why? Explain briefly.

My answer:

The two tests in the Figures are a (Welch) two-sample t-test and a Mood’s median test,
respectively.

To decide which one to look at, start with the boxplot in Figure 4. This indicates that
AHFactivity for the carrier group is pretty close to normal, but that for the normal group it
has outliers in both tails.

To run a two-sample t-test, we need both groups to be close enough to normal given the sample
sizes. Make a call on this; either answer is justifiable, so the points are for your justification. I
don’t think there is any problem with the carrier group (with a sample size of 45). With the
normal group (sample size 30), you can say either:

• the sample size is not large enough to overcome the effect of the outliers. Therefore it is
not true that both groups are normal enough in shape, and we should use Mood’s median
test (Figure 6). Your answer must mention the sample size; it is not enough to say that
the AHFactivity values are not normally distributed (for the normal group of women),
and stop.

• the sample size of 30 is large enough to overcome the effect of the outliers, because the
outliers are not serious and we will be helped by the Central Limit Theorem. Therefore,
both groups are normal enough and we should use the t-test, Figure 5.

Another possible consideration is that the two tests in Figures 5 and 6 have rather similar
P-values. From that point of view, it doesn’t matter which test we do, since the conclusion
is the same either way. (The usual thing in that case is to prefer the t-test, since it uses the
data more efficiently (the exact values rather than whether or not a value is above the grand
median), but it would be better to say at least something about sufficient normality before
asserting that.) Any other discussion of P-values here is premature, because that belongs in the
next part.

An answer without a justification looks like a guess, and is a fast zero. The reasoning is the
purpose of the question.

One point each for a discussion of normality and sample size for each group of women (a half
point in each case for discussing normality only), and one point for using that to make a reasoned
choice of test. Alternatively, if you decided that the normal group wasn’t normally distributed
enough and you say something like “showing that one group is not normal enough rules out
using a t-test”, you don’t need to consider the carrier group at all.

(d) [2] What do you conclude from your preferred test, in the context of the data?

My answer:

If you preferred the Mood’s median test, your P-value is 5.7 × 10−7 and you reject the null



STAC32 Final Exam Page 13

hypothesis, which says that the normal and carrier women have the same median level of
AHFactivity, in favour of a two-sided alternative (no alternative stated) that the two groups of
women have different medians.

If you preferred the t-test, your P-value is 5.7 × 10−6 and again you reject the null hypothesis,
which says that the normal and carrier women have the same mean level of AHFactivity, in
favour of a two-sided alternative (no alternative stated) that the two groups of women have
different means.

Make sure that the population parameters that you are making an inference about match the
test you are doing. Only one point if they don’t and you are otherwise correct. Also, make sure
that you say that it’s AHFactivity you’re talking about, not the other one AHFantigen; we
don’t know anything about that.

Another possible angle is to think back to what we are trying to find out: does AHFactivity
level distinguish the normal and carrier women? The small P-value says that it does. If you
word it this way, that’s fine as far as I am concerned.

(e) [2] Figure 7 shows bootstrap sampling distributions of the sample mean for each group of women.
Do these plots support your conclusions about which test to do, or do they cause you to change
your mind? Explain briefly.

My answer:

The two bootstrap sampling distributions are both very close to normal (the points are very close
to the line), which means that both sample sizes are large enough to overcome any non-normality
in the population distributions. (In the case of the normal group, you may find that surprising,
but that’s the way it is.) Hence the t-test is actually just fine.

If you preferred the t-test before, this supports your decision; if you preferred the Mood median
test, it should cause you to change your mind. Again, the points are for the explanation.

Your answer, for full credit, needs to say something about the sample sizes actually being big
enough to make a t-test viable, since that is the purpose of looking specifically at the bootstrap
sampling distributions of the sample means. Some discussion about these distributions being
close to normal, or not, without taking it further, is one point. (In my opinion, with the masses
of points close to the lines, there is no problem with the normality here and therefore the sample
sizes are big enough, but if you want to disagree with me, fine, if you can take your argument
where it needs to go. If you think the normality here is no good, then these plots support your
decision to use Mood’s median test, or make you change your mind from using a t-test, as
appropriate.) There was also 1.5 for getting close but not completely showing that you knew
what the Figure was telling you.

My intended purpose here was to get you to realize just how powerful the Central Limit Theorem
is. As I see it, the boxplot for the normal group is nothing like normally distributed, and
somewhere, either earlier or here, I wanted you to be able to say that because the sample is
large enough, the t-test is actually just fine. If you said that earlier, then the normal quantile
plots of the bootstrap sampling distributions of the sample mean will probably confirm your
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earlier call that the sample sizes are big enough, and all you have to do is say that.

(f) [2] Why did we not do a one-sided test, despite the evidence in Figure 4?

My answer:

The alternative hypothesis cannot be chosen by looking at the data; it has to come from some
theory or expectations outside of the data. Here, we didn’t know ahead of time whether we
expected AHFactivity to be higher or lower for the carrier group, because we had, or I gave
you, no hints about that. The clue is in the last sentence of the question (before I tell you which
Figure shows the data): “whether either of them in any way distinguish women with hemophilia
A from women without hemophilia A.” The key words are “in any way”: it might be making
the variable in question higher or lower, and which way it goes is part of the research question.

In the class example of the children learning to read, we wanted to know whether the new reading
method was better, because that would indicate that it was useful and worth investigating
further. The interest in “better” came from outside the data we had, not by looking at the
boxplot.

I was wondering whether many people would get sidetracked by the very obvious direction of
the differences in medians in the boxplot, but most people seemed to recognize in some fashion
that the “research hypothesis” was what we needed the alternative hypothesis to reflect. Some
of the answers, though, got a bit close to “we did a two-sided test because we did a two-sided
test”, which I don’t want to be giving marks to.

3. This question is all about tidying data: that is, rearranging it to display the data in a different layout
that might be more convenient for graphing, display, etc.

(a) [3] Figure 8 shows a dataframe d1 that needs to be rearranged as the dataframe d2 shown in Figure
9. What code would rearrange d1 into d2?

My answer:

This is making a wider dataframe longer, so pivot_longer will do it:
d1 %>%

pivot_longer(-id, names_to = "treatment", values_to = "score")

## # A tibble: 9 x 3
## id treatment score
## <chr> <chr> <dbl>
## 1 A g1 10
## 2 A g2 21
## 3 A g3 29
## 4 B g1 11
## 5 B g2 20
## 6 B g3 28
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## 7 C g1 12
## 8 C g2 22
## 9 C g3 31

There is no obligation to save the result. The focus in this question is on the tidying. Note that
you need to get the columns in the long dataframe to have the same names as mine, so that
the names_to and values_to have to be the same as mine. (This differs from the usual tidying
that you will do in the workplace, where you get to choose the names of the new columns.) Any
way of specifying the columns to pivot longer is good, for example:
d1 %>%

pivot_longer(g1:g3, names_to = "treatment", values_to = "score")

## # A tibble: 9 x 3
## id treatment score
## <chr> <chr> <dbl>
## 1 A g1 10
## 2 A g2 21
## 3 A g3 29
## 4 B g1 11
## 5 B g2 20
## 6 B g3 28
## 7 C g1 12
## 8 C g2 22
## 9 C g3 31

Two points if you get the pivot_longer right, but have different names for one or both of the
new columns. Minus one point per error otherwise, with 1 if you have something substantial
correct (in the grader’s estimation). You might lose only half a point for something the grader
considers to be “very small”.

(b) [2] Suppose, instead, you had been given the dataframe d2 shown in Figure 9 and were asked to
rearrange it into d1. What code would do this?

My answer:

I tried to not advertise the fact that this is the exact opposite of the previous part, and so
pivot_wider is what you need:
d2 %>%

pivot_wider(names_from = treatment, values_from = score)

## # A tibble: 3 x 4
## id g1 g2 g3
## <chr> <dbl> <dbl> <dbl>
## 1 A 10 21 29
## 2 B 11 20 28
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## 3 C 12 22 31

This time, the names of the new columns will come from the values in the treatment column,
so there is no need to worry about what the names will be.

One point if it’s not right, but you have something substantial correct.

(c) [4] A dataframe dd is shown in Figure 10. The numerical values are all of a variable y observed
under different conditions: a level that takes the values Hi and Lo, and a size that takes the
values Large and Small. There are two replicate values of y observed at each level-size combination;
these are labelled R1 and R2 in the column rep.

It is desired to arrange the dataframe so that all the values of y are in one column, with columns
indicating the level, size, and rep at which that value of y was observed. What is the most
concise code that would do this?

My answer:

This is the variant of pivot_longer where the current column names encode two things: both
a level and a size. To handle this, use two things in names_to, and also use a names_sep to say
what they are separated by. The answer to this is often an underscore, but here they are not
separated by anything at all. However, the level is always two characters long, so separating
after the second character, that is, with names_sep being 2, will work. Make sure to use the
names level and size for your new columns:
dd %>%

pivot_longer(-rep, names_to = c("level", "size"), names_sep = 2,
values_to = "y")

## # A tibble: 8 x 4
## rep level size y
## <chr> <chr> <chr> <dbl>
## 1 R1 Hi Large 16
## 2 R1 Hi Small 17
## 3 R1 Lo Large 19
## 4 R1 Lo Small 18
## 5 R2 Hi Large 18
## 6 R2 Hi Small 20
## 7 R2 Lo Large 22
## 8 R2 Lo Small 21

There is no need to do anything special with the rep column; this will be repeated as necessary
to match the values of the other variables.

The size is also always five characters long, so it’s also possible to split before the fifth character
from the end with names_sep = -5.

Points: one for identifying the columns to pivot-longer (HiLarge:LoSmall also works), one for
the two-part names_to, one for a suitable names_sep, one for values_to. A pivot_longer
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without anything else correct is 1 in total. (There has to be a pivot_longer to get anything.)

The second-best answer (worth 3 points if you get it right) is the two-step process with the
basic pivot_longer followed by separate. This needs you to invent a name for the variable
that contains the original column names, and then, in separate, use a sep that is the same as
the names_sep I used above:
dd %>%

pivot_longer(-rep, names_to = "var", values_to = "y") %>%
separate(var, into = c("level", "size"), sep = 2)

## # A tibble: 8 x 4
## rep level size y
## <chr> <chr> <chr> <dbl>
## 1 R1 Hi Large 16
## 2 R1 Hi Small 17
## 3 R1 Lo Large 19
## 4 R1 Lo Small 18
## 5 R2 Hi Large 18
## 6 R2 Hi Small 20
## 7 R2 Lo Large 22
## 8 R2 Lo Small 21

One point for a correctly-done pivot_longer (this is really the same idea as the previous part,
so this is rather a giveaway), and two for the separate with the right into and sep. Expect
only one for the separate part if you made any mistakes in it but had a separate there.

(d) [4] A dataframe ddd is shown in Figure 11. Some code is shown in Figure 12. What output will that
code produce?

My answer:

This is one of those cases where pivot-wider may not work as you expect:
ddd %>%

pivot_wider(names_from = id, values_from = y)

## # A tibble: 2 x 5
## g A B C D
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 lo 20 NA 23 NA
## 2 hi NA 22 NA 24

The column id gives names to the new columns, and the column y contains the values that go
in them. The other column g not named in the pivot-wider determines the row where each
value goes. (This is a slightly different arrangement than the example in class.) Thus there are
four columns, A through D, and two rows, one where g is lo and the other where g is hi.
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Then:

• the 20 goes in the lo row and the A column
• the 22 goes in the hi row and the B column
• the 23 goes in the lo row and the C column
• the 24 goes in the hi row and the D column.

There are two rows, four columns and only four values of y to go in the eight cells, so the other
four cells will be empty and will get an NA (missing) in them, such as the hi row of the A column.

Two points for the right thing in the right column, but with only one row (or more than two
rows). Likewise two for the right rows but the wrong columns. One for any progress towards
the right answer (in the grader’s judgement). Getting the right rows and columns but a small
error in what goes in them (a wrong value or switching of two values) is three.

4. 164 men took part in an experiment to see whether the drug cholostyramine lowered blood cholesterol
levels. The men were supposed to take six packets of cholostyramine per day, but many actually took
much less. We want to investigate whether men that better adhered to the instructions had a greater
improvement in blood cholesterol levels.

Some of the data are shown in Figure 13. There are two columns:

• compliance: the percentage of all the packets of cholostyramine given to that man that were actually
taken

• improvement: the blood cholesterol was measured at the beginning and at the end of the study.
This column is the percentage decrease, compared to the initial value. A negative improvement
means that blood cholesterol was worse (higher) at the end of the study than it was at the beginning.

(a) [4] A scatterplot is shown in Figure 14. Interpret this scatterplot in terms of the form, direction,
and strength of the relationship. (“Form” means whether it is linear or curved or something else,
“direction” is up or down, “strength” is strong, weak, or something in between.) Explain briefly.

My answer:

This is an upward trend (direction) and weak to moderate in strength (there is a lot of scatter,
but not so much as to hide the trend). As for form, it is mostly linear, but improvement for the
highest-compliance men (say, above a compliance rate of about 90) is both higher and more
spread out than a line through the rest of the points would suggest.

One point for “upward”, one for a properly reasoned description of the strength, one for saying
that it is mostly linear, and one for saying something relevant about the high-compliance men.
Somebody used the term “ramp up” which is a nice description of what is happening at the high
end. If you think it’s curved, say something about the kind of curve you think it is. You could
also say that there is fanning out on the right side because the variability seems to increase
there.
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(b) [2] The output from a linear regression is shown in Figure 15. Do you think there is there a real
relationship between compliance and improvement, on the basis of this output? Explain briefly.

My answer:

This is asking whether the relationship is significant: that is, if the slope is significantly different
from zero, which it is (P-value less than 2.2 × 10−16). There is definitely a real relationship
between compliance and improvement. (In this case, people that take more of their medication
improve more.)

One point for saying that the slope. 0.58, is “clearly not zero” or similar, without actually
getting to the P-value. Likewise, asserting that the R-squared is “reasonably high” gets about
the same distance to the answer, so is also one point.

I don’t want you to get too much credit for a “kitchen sink” answer in which you write down
everything you can think of. My take is if you lead with the P-value, then discuss how the
R-squared is not very high (or whatever you think it is), that’s actually good (because you
can then say that it is a real relationship but not a very strong one). But if you lead off with
something else and mention the P-value as what looks like an afterthought, expect only one,
because you have not shown that you understand what is important here.

(c) [2] A plot of residuals from the regression cholost.1 is shown in Figure 16. What do you conclude
from this plot? Explain briefly.

My answer:

This is a normal quantile plot of the residuals. The residuals have a normal distribution, because
the points are close to the line. If the regression is appropriate, the residuals will be close to
normal like this. Or, this particular plot is OK as far as the regression is concerned.

Note the logic: if the regression is OK, the residuals will be normal, but if the residuals are
normal, the regression may not be OK because there might be a problem with the plot of
residuals vs fitted values (see next part).

As usual, if you conclude something defensible, even not what I did, I am fine with that. The
major point is to show that you know it to be a normal quantile plot, and to have an opinion
about the normality it displays. (The question tells you that it’s a plot of the residuals.) I am
not wild keen on an answer of “skewness”, because the endmost points are close to the line (it’s
the ones further in that are off the line), but I can be swayed by an answer that seems well
thought out.

You need to say something showing that you know this is a normal quantile plot (like “the
points are close to the line so the residuals are close to normal”), rather than making me think
that you are looking at a scatterplot (“there is an upward trend”).
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(d) [2] Another plot of residuals is shown in Figure 17. What do you conclude from this plot? Explain
briefly.

My answer:

This is a plot of residuals against fitted values. For the regression to be appropriate, this should
be a random scatter of points. However, it is not quite that: the points on the right extend
further up than the scatter of the other residuals (the most positive four or five residuals go
with a fitted value greater than 50). That is to say, if you know the fitted value is among the
largest ones, the residual is more likely to be very positive (or, another way to say it, is more
likely to be positive than negative). This is different from the residuals to the left of a fitted
value of about 50, which form a more or less horizontal band around zero.

You can also describe this as “fanning-out” as long as you are careful to say where the fanning
out is happening: only for the very largest fitted values, because the variability of the residuals
is about the same the rest of the way across.

There are several ways to say something like this. Find one and I’m happy. There are also two
apparently outlying negative residuals with fitted values around 35, but this is to my mind less
of an issue than what is happening with the fitted values over 50. One point for naming this
as a problem (and not talking about the highest fitted values). One point also for saying that
everything is OK, and 1.5 for saying that something is amiss on the right without being precise
enough about what that something is.
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(e) [3] One of the researchers believes that a compliance over 95 (percent) is associated with better
improvement, and fitted the model whose code and output are shown in Figure 18. Is there a
significant benefit to a compliance over 95 percent, over and above the greater improvement that we
have already seen goes with a greater compliance? How big is this benefit? How can you tell? (Note
that in a regression model, a true-false variable is treated the same as a categorical variable with
levels TRUE and FALSE).

My answer:

The best answer notes that the new column bonus is TRUE for men with compliance 95 or
greater and FALSE otherwise. In the summary table, the P-value for bonus is 0.00032, which
is definitely significant, so there is clearly an additional impact of having compliance over 95
percent. The Estimate reveals that having a compliance of 95 or more adds a predicted 18
percentage points to the improvement, over and above the higher improvement that would be
predicted for a higher compliance anyway. (Give the P-value, because there are several in the
output and I want to make sure you have the right one, or at least tell me that you are looking
at the P-value for bonusTRUE. “The P-value is small” doesn’t really say anything much, because
some of them are and some aren’t.)

A less insightful answer looks at the R-squared from before, 0.46, and notes that it has increased
to 0.50. This, it is true, indicates that the regression fits better than it did before, but it is not
on the scale of changes in improvement, which is what we wanted to know about. You might
be thinking that this is a rather modest increase in R-squared to be so significant, but this is
because we have a lot of data. A perhaps better indicator is the adjusted R-squared. This also
goes up from the first model to the second one, which indicates a real improvement in fit.

The effect of the extra term in bonus is to add a “jump” to the relationship at a compliance of 95
percent, so that men with that compliance or higher are predicted to have a higher improvement
than before. This doesn’t improve the fanning-out that you may have seen before, but it does
do something about the majority of residuals for a high compliance (and thus high fitted value)
being positive.

5. Hospitals can charge different amounts of money, even to patients requiring the same treatment. Are
there systematic reasons why they do so? A doctor collected data on 49 patients with the same diagnosis,
as follows:

• Sex M (Male) or F (Female).
• MD which doctor they were treated by (there are three different doctors)
• Svty severity of illness, from 1 (lowest severity) to 4 (highest), which we treat as quantitative.
• Chrg total amount charged by the hospital, in dollars (response)
• Age of patient in years

Some of the data is shown in Figure 19.



STAC32 Final Exam Page 22

(a) [2] Plots of charges against each of the explanatory variables are shown in Figures 20 and 21. Why
are some of the plots boxplots?

My answer:

Because the explanatory variables in question are categorical, and the right plot for quantitative
vs. categorical is a boxplot.

The issues here are two:

• the explanatory variables in question are categorical (most important)
• the response variable is quantitative

so in principle you need to mention both. (If we had a categorical response, which of course we
can’t for a regression, we would need something like a grouped bar chart. So as long as you get
“the explanatory variables that are gender and doctor are categorical, you are good.)

I could have treated severity as categorical also, and drawn a boxplot there as well (with four
boxes, one for each level of severity), but I treated that as quantitative to stop things getting
too messy. Hence talking about severity here won’t help you.

(b) [2] There was one patient whose charge was much higher than for any of the other patients. What
do Figures 20 and 21 tell you about that patient?

My answer:

This is the upper outlier on all four of the plots. Thus, reading across the plots, it is a person of
age about 70 with severity 4 (the highest), who was treated by doctor MD1021, and who was
female. Half a point each. Get reasonably close to these (50–75 is not close enough for age).

(c) [2] Ignoring the upper outlier, what do Figures 20 and 21 tell you about when charges are higher,
for each of the four explanatory variables? (Four very short answers.)

My answer:

Charges are higher for:

• older patients (with higher age)
• patients with severity 4 (the highest)
• patients treated by doctor MD1021 (and lowest for those treated by MD730)
• female patients, as opposed to males.

Half a point for each of those.

If you want to say that the doctors are all about the same, say that (I am fine with it), or
something else relevant about how the doctors compare, but say something about the doctors.
You could also say that there is not much difference between the genders (something that comes
out of the next part).
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This is a good question to answer with bullet points, which makes it easy to check that you
have said four things.

(d) [2] A regression model is fitted, with output shown in Figure 22. Assuming that the residual plots
look appropriate, what would you do next, and why is the drop1 output better to decide this from?

My answer:

We have categorical explanatory variables, so it is better to look at the drop1 output to decide
what to do next (eg. whether to remove the categorical variables).

This says that we should remove the non-significant Sex from the model, and fit a model with
only MD, Svty and Age.

One point for each of those. 0.5 for the first if you only get as far as saying what to do without
saying that Sex is the thing to be removed (you have the information to determine this, from
Figure 22).

(e) [2] In Figure 22, do the positive Estimates for severity and age make practical sense, in the context
of the data? Explain briefly.

My answer:

The positive estimates indicate that the charge is predicted to be greater for an older patient
and for a patient with higher severity. Both of these are cases where there are more things to
go wrong: an older patient may have more of other health issues, and a more severe case may
require more work to treat satisfactorily.

One point for saying or implying what the positive Estimates imply for charges, and the second
for saying something sensible about why that’s what you’d expect. If you get the second point,
it will generally imply that you said enough to get the first one as well.

The P-values are not relevant here.

(f) [2] Based on Figure 22, which doctor has the highest predicted charges, all else equal? Explain
briefly.

My answer:

The two Estimates for the doctors shown are both negative, so the doctor with the highest
predicted charges is the baseline doctor MD1021 (go back to the data listing or the boxplot to
find out what this doctor is called, or at least what their ID is.)

This is the doctor with the very large outlying charge, but that doctor’s average (median) charge
is higher than for the other doctors as well (the boxplots are telling the same story as the
regression).
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Another reasonable answer is that the drop1 output says that there is no significant difference in
charges between the three doctors (P-value 0.098), so that there is no reason to choose between
them on the basis of charges. (Looking at the P-values in the summary output only compares
with the baseline doctor MD1021, which does not tell the whole story about comparing doctors.
So the P-value in the drop1 table is the only one of value, not the ones in the summary output.)

Have an explanation if you want any points.

(g) [2] What is the precise meaning of the P-value 0.0368 in Figure 22?

My answer:

This means that there is a significant difference in (predicted) charges between doctor MD499
and the baseline doctor MD1021, all else equal.

“The doctor MD499 is significant” is not enough. A small P-value means “significantly different
from something”, and the identity of the something is important. A generous one point for an
answer like this, that at least identifies which doctor the P-value is talking about.

6. The function rnorm generates random normal data. It has three inputs: the sample size, the population
mean, and the population standard deviation. Let’s suppose that you will be generating a lot of normal
random numbers with various sample sizes and various means, but the population standard deviation will
always be half as big as the mean. (You are building a very niche application.) You want to streamline
your process by writing a function called my_random that has as input a sample size n and a population
mean mu, and generates and returns a normal random sample according to the specifications.

(a) [3] What code would you use to write your function?

My answer:

Get the layout of it right; the function itself is not very complicated. This is how I would do it:
my_random <- function(n, mu) {

sigma <- 0.5 * mu
rnorm(n, mu, sigma)

}

This function calls rnorm, and you literally pass the input n and mu straight into rnorm; you
don’t have to do anything else with those.

Variations: save the output from rnorm and then return it by putting the name of the saved
sample on the next line; do the same but wrap it in return; directly use 0.5 * mu as the third
input to rnorm without calculating sigma first. This last variant makes the function a one-liner,
and thus you don’t actually need the curly brackets in that case. You can also use mu / 2
rather than 0.5 * mu to get the same result.

By some means, you have to pass the right sample size, population mean and population SD
into rnorm, based on the inputs to your function.
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Points for this one are the grader’s judgement of how far you got: 2 means “most of the way”
and 1 means “some progress, but not much, towards a solution”.

(b) [2] How would you use your function to obtain 7 random normal values with mean 10 and SD 5?

My answer:

The function has two inputs, the sample size and the mean, so you don’t input the SD (this is,
in any case, already half as big as the mean):
my_random(7, 10)

## [1] 6.861400 5.327836 5.983675 13.635171 5.527759 18.783726 7.723223

(of course, you don’t know what the output is going to be. Mine is to show that it works.)

Other ways to call your function are to name the inputs, which you can then give in either order
(since R then matches them by name):
my_random(n = 7, mu = 10)

## [1] 7.662627 11.947027 18.443977 13.876961 8.664886 7.454273 5.054414

or
my_random(mu = 10, n = 7)

## [1] 7.365263 9.893543 2.694266 18.843294 4.377927 7.004633 9.760273

These are different because they are random samples, but they are both consistent with a mean
of 10 and an SD of 5 (and a sample size of 7).

I can’t see much beyond 2 if you have something that will work, and 0 otherwise. If you find a
way to get close (in the grader’s judgement) but not close enough, you can get 1.

(c) [3] For the next little while, you are told that the sample size will be 10. How would you change
your function to avoid having to enter the sample size if it is 10, and how could you most concisely
use your new function to obtain 10 random normal numbers with mean 20 (and SD 10)? (You only
need to give what changes you would make.)

My answer:

This can be done by making a sample size of 10 be the default, on the top line of the function,
as shown:
my_random <- function(n = 10, mu) {

sigma <- 0.5 * mu
rnorm(n, mu, sigma)

}
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You just need to tell me how the top line changes; we will assume that the rest of it is the same.

To use the new function, the only input it now needs is mu, but you’ll need to name it, since n is
first:
my_random(mu = 20)

## [1] 39.840441 12.127610 16.257106 11.132222 24.686321 2.580573 27.053426
## [8] 15.919922 18.770792 7.052527

There are, as you can count, 10 values here, which was the default sample size in our rewritten
function (and we didn’t specify a sample size).

If you don’t name the input, R will think that you are trying to give a value for n rather than
mu, and will complain that you are not supplying a value for mu:
my_random(20)

## Error in my_random(20): argument "mu" is missing, with no default

(d) [3] Figure 23 shows a dataframe d containing some population means. How would you use your
modified function to make a list-column called sample_data containing random samples of size 10
from normal distributions with the appropriate means (and standard deviations that are half as big
as the means)?

My answer:

This is meant to be an exercise in mutate with map (just plain map since the output from our
function is several numbers rather than just one):
d %>% mutate(sample_data = map(the_mean, ~my_random(mu = .)))

## # A tibble: 3 x 2
## the_mean sample_data
## <dbl> <list>
## 1 4 <dbl [10]>
## 2 8 <dbl [10]>
## 3 24 <dbl [10]>

Another equally good way is to use rowwise, thus:
d %>%

rowwise() %>%
mutate(sample_data = list(my_random(mu = the_mean)))

## # A tibble: 3 x 2
## # Rowwise:
## the_mean sample_data
## <dbl> <list>
## 1 4 <dbl [10]>
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## 2 8 <dbl [10]>
## 3 24 <dbl [10]>

If you didn’t realize that we were using the default sample size again, it’s easier to go rowwise
with this:
d %>%

rowwise() %>%
mutate(sample_data = list(my_random(10, the_mean)))

## # A tibble: 3 x 2
## # Rowwise:
## the_mean sample_data
## <dbl> <list>
## 1 4 <dbl [10]>
## 2 8 <dbl [10]>
## 3 24 <dbl [10]>

although the map way is not actually much harder, since the sample size is always 10. If the
dataframe d had had two columns, sample sizes and population means, the map would have
been much messier (we would have had to use map2 because we would have been for-eaching
over 2 varying things). As it is, though:
d %>% mutate(sample_data = map(the_mean, ~my_random(10, .)))

## # A tibble: 3 x 2
## the_mean sample_data
## <dbl> <list>
## 1 4 <dbl [10]>
## 2 8 <dbl [10]>
## 3 24 <dbl [10]>

(e) [2] How would you arrange it so that you could see the actual random data that had been generated?

My answer:

Add unnest(sample_data) onto the end of your pipeline. This is all you need to say; no need
to write the whole thing out again.

To demonstrate that it works:
d %>% mutate(sample_data = map(the_mean, ~my_random(mu = .))) %>%

unnest(sample_data)

## # A tibble: 30 x 2
## the_mean sample_data
## <dbl> <dbl>
## 1 4 5.66
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## 2 4 4.39
## 3 4 -0.770
## 4 4 2.37
## 5 4 2.57
## 6 4 2.22
## 7 4 2.49
## 8 4 4.95
## 9 4 4.63
## 10 4 3.97
## # ... with 20 more rows

Extra: the 68-95-99.7 rule says (for example) that from a normal distribution, 95% of values
sampled from it are within 2 SDs of the mean. In this question, the SD is always half of the mean,
so 95% of the sampled values are between µ−2σ = µ−2(0.5µ) = 0 and µ+2σ = µ+2(0.5)µ = 2µ.
You can check the values above to see how well it worked; for example, for a mean of 4, almost
all the values should be between 0 and 8.
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Use the rest of this page if you need more space. Be sure to label any answers here with the question and
part they belong to.
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Figures

library(tidyverse)
library(readxl)
library(smmr)

Figure 1: Packages

sp:sex:index:FL:RW:CL:CW:BD
B:M:1:8.1:6.7:16.1:19:7
B:M:2:8.8:7.7:18.1:20.8:7.4
B:M:3:9.2:7.8:19:22.4:7.7
B:M:4:9.6:7.9:20.1:23.1:8.2
B:F:3:9.1:8.1:18.5:21.6:7.7
B:F:4:9.1:8.2:19.2:22.2:7.7
B:F:5:9.5:8.2:19.6:22.4:7.8
B:F:6:9.8:8.9:20.4:23.9:8.8
O:M:10:13.7:11:27.5:30.5:12.2
O:M:11:14:11.5:29.2:32.2:13.1
O:M:12:14.1:10.4:28.9:31.8:13.5
O:M:13:14.1:10.5:29.1:31.6:13.1
O:F:36:19.7:16.7:39.9:43.6:18.2
O:F:37:19.9:16.6:39.4:43.9:17.9
O:F:38:19.9:17.9:40.1:46.4:17.9
O:F:39:20:16.7:40.4:45.1:17.7

Figure 2: Crabs data (some)
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hemophilia %>% slice_sample(n = 20)

## AHFactivity AHFantigen gr
## 46 -0.5573 0.0548 carrier
## 54 -0.2205 0.0046 carrier
## 37 -0.3608 0.1237 carrier
## 56 -0.3447 0.0097 carrier
## 70 -0.3352 0.0875 carrier
## 2 -0.1698 -0.1585 normal
## 29 -0.1972 -0.0607 normal
## 13 -0.0225 -0.0580 normal
## 27 -0.2280 -0.1710 normal
## 68 -0.2642 0.0867 carrier
## 63 -0.0312 0.1400 carrier
## 17 -0.4702 -0.3099 normal
## 41 -0.4719 -0.1079 carrier
## 19 0.0006 -0.1153 normal
## 73 -0.4055 -0.2418 carrier
## 1 -0.0056 -0.1657 normal
## 18 -0.1519 -0.0686 normal
## 40 -0.3539 0.0722 carrier
## 72 -0.1744 0.1892 carrier
## 30 -0.0867 -0.0560 normal

Figure 3: Hemophilia data (20 randomly chosen rows)
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ggplot(hemophilia, aes(x = gr, y = AHFactivity)) + geom_boxplot()
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Figure 4: Graph of AHFactivity for each group of women

t.test(AHFactivity ~ gr, data = hemophilia)

##
## Welch Two Sample t-test
##
## data: AHFactivity by gr
## t = -4.9448, df = 65.029, p-value = 5.655e-06
## alternative hypothesis: true difference in means between group carrier and group normal is not equal to 0
## 95 percent confidence interval:
## -0.2429789 -0.1031744
## sample estimates:
## mean in group carrier mean in group normal
## -0.3079467 -0.1348700

Figure 5: Test 1 for hemophilia data
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median_test(hemophilia, AHFactivity, gr)

## $table
## above
## group above below
## carrier 12 33
## normal 25 4
##
## $test
## what value
## 1 statistic 2.500690e+01
## 2 df 1.000000e+00
## 3 P-value 5.712562e-07

Figure 6: Test 2 for hemophilia data
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Figure 7: Bootstrap sampling distributions of sample means for hemophilia data, normal quantile plots
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d1
## # A tibble: 3 x 4
## id g1 g2 g3
## <chr> <dbl> <dbl> <dbl>
## 1 A 10 21 29
## 2 B 11 20 28
## 3 C 12 22 31

Figure 8: Dataframe d1

d2
## # A tibble: 9 x 3
## id treatment score
## <chr> <chr> <dbl>
## 1 A g1 10
## 2 A g2 21
## 3 A g3 29
## 4 B g1 11
## 5 B g2 20
## 6 B g3 28
## 7 C g1 12
## 8 C g2 22
## 9 C g3 31

Figure 9: Dataframe d2

dd
## # A tibble: 2 x 5
## rep HiLarge HiSmall LoLarge LoSmall
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 R1 16 17 19 18
## 2 R2 18 20 22 21

Figure 10: Dataframe dd

ddd
## # A tibble: 4 x 3
## id g y
## <chr> <chr> <dbl>
## 1 A lo 20
## 2 B hi 22
## 3 C lo 23
## 4 D hi 24

Figure 11: Dataframe ddd
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ddd %>%
pivot_wider(names_from = id, values_from = y)

Figure 12: Code to run on dataframe ddd

cholost %>% slice(1:20)
## compliance improvement
## 1 0 -5.25
## 2 27 -1.50
## 3 71 59.50
## 4 95 32.50
## 5 0 -7.25
## 6 28 23.50
## 7 71 14.75
## 8 95 70.75
## 9 0 -6.25
## 10 29 33.00
## 11 72 63.00
## 12 95 18.25
## 13 0 11.50
## 14 31 4.25
## 15 72 0.00
## 16 95 76.00
## 17 2 21.00
## 18 32 18.75
## 19 73 42.00
## 20 95 75.75

Figure 13: Cholostyramine data (some)
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ggplot(cholost, aes(x = compliance, y = improvement)) + geom_point()

0

40

80

120

0 25 50 75 100
compliance

im
pr

ov
em

en
t

Figure 14: Cholostyramine scatterplot
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cholost.1 <- lm(improvement ~ compliance, data = cholost)
summary(cholost.1)

##
## Call:
## lm(formula = improvement ~ compliance, data = cholost)
##
## Residuals:
## Min 1Q Median 3Q Max
## -55.83 -13.69 0.15 15.59 60.07
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.30725 3.44903 -0.669 0.504
## compliance 0.58410 0.04967 11.760 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 22.11 on 162 degrees of freedom
## Multiple R-squared: 0.4605, Adjusted R-squared: 0.4572
## F-statistic: 138.3 on 1 and 162 DF, p-value: < 2.2e-16

Figure 15: Cholostyramine regression 1
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ggplot(cholost.1, aes(sample = .resid)) + stat_qq() + stat_qq_line()
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Figure 16: Residual plot 1 for cholostyramine data
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ggplot(cholost.1, aes(x = .fitted, y = .resid)) + geom_point()
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Figure 17: Residual plot 2 for cholostyramine data



STAC32 Final Exam Figures

cholost %>% mutate(bonus = (compliance >= 95)) -> cholost_bonus
cholost.2 <- lm(improvement ~ compliance + bonus, data = cholost_bonus)
summary(cholost.2)

##
## Call:
## lm(formula = improvement ~ compliance + bonus, data = cholost_bonus)
##
## Residuals:
## Min 1Q Median 3Q Max
## -56.951 -12.987 3.153 15.667 51.625
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.63250 3.49127 0.468 0.64071
## compliance 0.44178 0.06154 7.179 2.45e-11 ***
## bonusTRUE 18.02349 4.89995 3.678 0.00032 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 21.3 on 161 degrees of freedom
## Multiple R-squared: 0.5023, Adjusted R-squared: 0.4962
## F-statistic: 81.26 on 2 and 161 DF, p-value: < 2.2e-16

Figure 18: Another regression for the cholostyrine data
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charges %>% slice_sample(n = 20)

## Sex MD Svty Chrg Age
## 3 M MD730 1 1487 17
## 30 F MD499 1 2499 39
## 28 M MD499 3 15600 72
## 24 M MD499 2 3535 20
## 12 F MD730 2 14111 85
## 6 M MD730 3 20280 61
## 18 F MD730 3 24809 73
## 8 M MD730 3 22382 90
## 37 F MD1021 4 64465 71
## 11 F MD730 4 22642 77
## 33 M MD499 3 15969 60
## 27 F MD499 3 24121 86
## 5 M MD730 2 18823 61
## 44 M MD1021 2 8759 56
## 38 F MD1021 3 17506 71
## 14 F MD730 2 13343 65
## 7 F MD730 1 4360 44
## 43 F MD1021 3 22734 66
## 31 M MD499 3 12423 69
## 1 M MD730 2 8254 57

Figure 19: Hospital charges data (20 randomly chosen rows)
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charges %>%
pivot_longer(c(Svty, Age)) %>%
ggplot(aes(x = value, y = Chrg)) + geom_point() +
facet_wrap(~name, scales = "free")
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Figure 20: Plot of hospital charges against explanatory variables part 1
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charges %>%
pivot_longer(c(Sex, MD)) %>%
ggplot(aes(x = value, y = Chrg)) + geom_boxplot() +

facet_wrap(~name, scales = "free")

MD Sex

MD1021 MD499 MD730 F M

0

20000

40000

60000

0

20000

40000

60000

value

C
hr

g

Figure 21: Plot of hospital charges against explanatory variables part 2
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charges.1 <- lm(Chrg ~ Sex + MD + Svty + Age, data = charges)
summary(charges.1)

##
## Call:
## lm(formula = Chrg ~ Sex + MD + Svty + Age, data = charges)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7435 -3094 -924 1661 33883
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3556.67 4211.82 -0.844 0.4031
## SexM -1178.13 2076.91 -0.567 0.5735
## MDMD499 -5176.48 2402.16 -2.155 0.0368 *
## MDMD730 -3878.69 2389.86 -1.623 0.1119
## Svty 6292.14 1054.71 5.966 4.1e-07 ***
## Age 126.34 65.95 1.916 0.0621 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6405 on 43 degrees of freedom
## Multiple R-squared: 0.6684, Adjusted R-squared: 0.6299
## F-statistic: 17.34 on 5 and 43 DF, p-value: 2.273e-09
drop1(charges.1, test = "F")

## Single term deletions
##
## Model:
## Chrg ~ Sex + MD + Svty + Age
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 1763818288 864.55
## Sex 1 13198805 1777017093 862.91 0.3218 0.57349
## MD 2 201004856 1964823144 865.84 2.4501 0.09824 .
## Svty 1 1459873008 3223691295 892.10 35.5901 4.101e-07 ***
## Age 1 150508850 1914327138 866.56 3.6692 0.06209 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Figure 22: Regression model and output
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d
## # A tibble: 3 x 1
## the_mean
## <dbl>
## 1 4
## 2 8
## 3 24

Figure 23: Population means to use with your function for generating random normal data
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