University of Toronto Scarborough Department of Computer and Mathematical Sciences STAC32 (K. Butler), Midterm Exam
 October 26, 2015

Aids allowed:

- My lecture overheads
- Any notes that you have taken in this course
- Your assignments and feedback on them
- My assignment solutions
- The course R text
- The course SAS text
- Non-programmable, non-communicating calculator

Before you begin, complete the signature sheet, but sign it only when the invigilator collects it. The signature sheet shows that you were present at the exam.

This exam has 32 numbered pages of questions. Please check to see that you have all the pages.
In addition, you should have an additional booklet of output to refer to during the exam. Contact an invigilator if you do not have this.

Answer each question in the space provided (under the question). If you need more space, use the backs of the pages, but be sure to draw the marker's attention to where the rest of the answer may be found.

The maximum marks available for each part of each question are shown next to the question part. In addition, the total marks available for each page are shown at the bottom of the page, and the total marks for each question are shown in the table on the next page.

When giving SAS code, it is acceptable to use code that runs on the online version of SAS Studio, or on the version that runs on a virtual machine. Either version is acceptable.

The University of Toronto's Code of Behaviour on Academic Matters applies to all University of Toronto Scarborough students. The Code prohibits all forms of academic dishonesty including, but not limited to, cheating, plagiarism, and the use of unauthorized aids. Students violating the Code may be subject to penalties up to and including suspension or expulsion from the University.

Last name: \qquad

First name: \qquad

Student number: \qquad

For marker's use only:

Page	Points	Score
1	2	
2	2	
5	4	
6	4	
8	6	
9	4	
13	2	
14	6	
16	7	
22	10	
23	2	
24	8	
25	2	
26	6	
27	2	
28	6	
30	11	
Total:	84	

1. Professional baseball in North America is played in two leagues, the American League (in which the Blue Jays play) and the National League (in which the Montreal Expos used to play). Figure 1 in the booklet of code and output shows, for each team, the league they play in and the number of home runs hit in the team's stadium. (The number of home runs is a total for the 2011 season; each team plays 81 home games.) The data have been saved in a file called hr . txt, both in the working folder of R Studio and in your home folder on SAS Studio.

Give suitable code that will accomplish the tasks described below. You should need only between one and three lines of code in each case.
(a) (2 marks) Read the data into an R data frame.

My answer: 2017 (only the second line needed by you):

```
R> library(tidyverse)
R> homers=read_delim("hr.txt"," ")
R> homers
Loading tidyverse: ggplot2
Loading tidyverse: tibble
Loading tidyverse: tidyr
Loading tidyverse: readr
Loading tidyverse: purrr
Loading tidyverse: dplyr
Conflicts with tidy packages -----------------------------------------------------------
filter(): dplyr, stats
lag(): dplyr, stats
Parsed with column specification:
cols(
    league = col_character(),
    homeruns = col_integer()
)
# A tibble: 30 x 2
            league homeruns
                <chr> <int>
    1 American 122
    2 American 103
    3 American 100
    4 American 96
    5 \text { American 93}
    American 86
    7 American 84
    8 American 80
    9 American 74
10 American 73
# ... with 20 more rows
2015:
R> homers2=read.table("hr.txt",header=T)
```

That's all you need, but I wanted to check that it worked:
$R>$ homers2
\qquad of possible 2 points.

(b) (2 marks) Draw side-by-side boxplots of home runs for each league, in R.

My answer: 2017:
R> ggplot(homers, aes(x=league, $y=h o m e r u n s))+g e o m _b o x p l o t()$
\qquad of possible 2 points.

\qquad of possible 0 points.

I detached the data frame afterwards, to be tidy (and because I don't need it attached any more). You can do this, or not. It doesn't matter.
You need the attach or else R won't know what leagues is. boxplot is one of those functions that accepts a data=, so this also works, without attach (for full credit):

```
R> boxplot(homeruns~league,data=homers)
```

Baseball fans among you may note that there tend to be more home runs at American League stadiums, and you may care to hypothesize that has something to do with the Designated Hitter rule.
For the rest of you: in the National League, the pitcher also has to bat. Pitchers tend not to be very good batters, because pitching (throwing) and batting (hitting) are very different skills. In the American league, the pitcher does not bat; in his place there is a player called the Designated Hitter, whose only job is to bat: he doesn't even field. This means that the overall
\qquad of possible 0 points.
level of batting ought to be a bit higher in the American league, and there should be a few more home runs on average than in the American league. As indeed there were in 2011.
The focus on stadiums is because, in a game between an American League and a National League team, the rules are according to the league of the home team. Thus, in an American League team's stadium, there is always a designated hitter (for both teams), and in a National League team's stadium, the pitchers have to bat (for both teams). This only used to be an issue in the World Series, but now there are inter-league games during the season, and it applies then as well.
(c) (2 marks) Calculate the mean number of home runs for each of the two leagues, in R.

My answer: 2017: group_by and summarize:
$R>$ homers \%>\% group_by(league) \%>\%
$R>$ summarize(m=mean(homeruns))
\# A tibble: 2 x 2
league m
<chr> <dbl>
1 American 83.35714
2 National 79.06250
2015: This calls for aggregate. You need to supply all the things: a "model formula" with a squiggle, a data frame, and a thing to calculate, in that order:
$R>$ aggregate(homeruns ${ }^{\sim}$ league, homers, mean)
league homeruns
1 American 83.35714
2 National 79.06250

Once again, the American league comes out a little higher. (There were no outliers and no substantial skewness, so we'd expect the medians and means to tell the same story.)
(d) (2 marks) Read the data into a SAS data set. (For this part, assume that the top line of the data file shown in Figure 1 has been omitted. This is to make your job easier. The solution where that top line has been included will also be considered correct.)

My answer: 2015: This kind of thing, with your choice of names for everything:

```
SAS> data homers2;
SAS> infile '/home/ken/hr.txt' firstobs=2;
SAS> input league $ homeruns;
2017: proc import, ignoring the parenthetical remark:
SAS> proc import
SAS> datafile='/home/ken/hr.txt'
SAS> out=homers
SAS> dbms=dlm
SAS> replace;
SAS> getnames=yes;
SAS> delimiter=' ';
```

\qquad of possible 4 points.
since the data values are separated by a single space.
You need to put the $\$$ after league, because that variable is text rather than numbers. The firstobs is optional for this question, because you might have copied to SAS Studio the whole data file, or all of it except for the first line. This question is meant to be a nice gentle warmup, so I didn't want you to get hung up on that detail (as I tried to state in the question).
(e) (2 marks) Draw side-by-side boxplots of home runs for each league, in SAS.

My answer:

```
SAS> proc sgplot;
SAS> vbox homeruns / category=league;
```


(f) (2 marks) Calculate the mean number of home runs for each of the two leagues, in SAS.

\qquad of possible 4 points.

American	14	14	83.3571429	18.0154085	57.0000000	122.00	000000
National	16	16	79.0625000	16.4983585	48.0000000	110.00	000000

\qquad of possible 0 points.
2. The Finger Lakes is a district of New York State famous for producing wines. There are several different vineyards along three of the lakes. For each vineyard, the selling price of a case of wine is recorded, and each vineyard is classified by which lake it is on (labelled location in the data set). SAS boxplots are shown in Figure 2 in the booklet of code and output.
(a) (2 marks) Describe how the locations differ in terms of average case price, if at all. (You will have to decide what you mean by "average".)

My answer: You first need to decide what "average" means in this context: median or mean. Either is good, but you should decide. The story is the same both ways: Keuka has clearly the largest mean (median), while the other two locations are similar, or Cayuga is slightly bigger (either is good).
(b) (2 marks) Describe how the locations differ in terms of inter-quartile range, if at all.

My answer: Inter-quartile range is specifically the height of the box, so don't consider the whiskers. Once again, Keuka is different from the other two, in having a much smaller IQR than the other two, which are again similar. Visually, I cannot detect a difference in IQR between these two.
(c) (2 marks) For the location that has the smallest inter-quartile range, how might the standard deviation be a misleading measure of spread? Explain briefly. (If you found more than one location that has the smallest IQR, pick any one of them, say which one you picked, and then answer the question.)

My answer: Keuka has the smallest IQR, and also has a big (low) outlier, so that the standard deviation for this group would be a lot larger than the IQR would suggest. (You cannot compare SD and IQR directly, so you have to be a bit careful with the wording.) This is misleading, because the SD is large only because this observation is so small: if the observations were not there, the SD would be a lot smaller.
You need to note the outlier, but you also need to say something about its affect on the SD. Simply saying something like "remove the outlier" does not answer the question.
\qquad of possible 6 points.
3. A study was carried out on boys with attention deficit hyperactivity disorder (ADHD). The researchers rated boys' performance on a number of tasks. One task was "has difficulty organizing work", and each boy was rated on a $0-4$ scale, with 0 meaning "has no difficulty" and 4 meaning "has a lot of difficulty". 282 boys with ADHD were rated. Only the integer values $0,1,2,3,4$ were used for ratings; there were no decimal ratings. Some output is shown in Figures 3 and 4. You may refer to the task as "this task" as you answer the questions below, rather than writing out "has difficulty organizing work" every time.
(a) (2 marks) Figure 3 shows some of the data, and a table of how many boys received each rating. Explain briefly what is assumed about the data in order to use a t-test (or t confidence interval) and why that assumption cannot be satisfied exactly here.

My answer: The data are supposed to come from a normal distribution, but the distribution of ratings is discrete (there are only five possible values), so it cannot be normal (which is continuous).
(b) (2 marks) Despite what you said in part (a), explain briefly why you would have no real hesitations about using a t-test (or t confidence interval) here.

My answer: The distribution appears normal-like with only a little skewness and no outliers (by the nature of the rating scale). With such a big sample, 282 boys, I would have no problems using t-distribution inference here. (I would expect the Central Limit Theorem to have "kicked in" well before a sample size of 282 .)
I was curious about what a normal quantile plot would look like for these data, so I drew one:

```
R> qqnorm(boys)
R> qqline(boys)
```

\qquad of possible 4 points.

The discreteness of the data shows up in the large horizontal patches of points. That much is unavoidable. The relevant question is really "are those patches of points near the line?". I'd say they more or less are; the only real problem is at the bottom, where the 0's and 1's are a bit lower than you'd expect with normality, but overall I'd say that this is pretty good.
The other thing we have going for us is the Central Limit Theorem. We have a large sample of $n=282$ boys. Remember that what makes the t-procedures work well is not the actual population distribution, but the sampling distribution of the sample mean, which is more normal when the sample size is larger.
Now, we don't have the population, so we can't assess that directly, but we can borrow an idea called the "bootstrap" and take samples of size 282 from our data with replacement (so that they come out different every time), and take the sample mean, like this:

```
R> z=sample(boys,282,replace=T)
R> mean(z)
```

\qquad of possible 0 points.
[1] 2.390071

Then we put that in a function, which can have as input the data and the sample size:

```
R> bootstrap.mean=function(mydata,n) {
R> z=sample(mydata,n,replace=T)
R> return(mean(z))
R> }
```

Try it a couple of times:

R> bootstrap.mean(boys,282)
$R>$ bootstrap.mean(boys,282)
[1] 2.042553
[1] 2.365248

OK so far. Then, just as we do with a randomization test, we use replicate to run it a bunch of times:

```
R> bootstrap.sample=replicate(1000,bootstrap.mean(boys,282))
```

R> hist(bootstrap. sample)
\qquad of possible 0 points.

\qquad of possible 0 points.

Oh yeah. Even the discreteness doesn't show up much when you take the mean of 282 observations (there are a lot of possible means with a sample that big, so the distribution is "effectively" continuous).
I have no doubts whatever about the t-procedures now.
(c) (2 marks) The output in Figure 4 contains a confidence interval. Explain precisely what that confidence interval means.

My answer: The precise answer is this: The procedure by which that interval was calculated will produce an interval containing the population mean (mean rating on this task for all ADHD boys) in 90% of all possible samples.
The answer "the interval produced by this method has probability 0.90 of containing the population mean" is true, but not precise enough, because you need to say that the probability is over all possible samples, and not just over the one sample that you happened to get.
\qquad of possible 2 points.

An answer like "the interval from 2.12 to 2.30 has probability 0.90 of containing the population mean" is wrong, because the interval either does contain the population mean or it doesn't. (You need to be a Bayesian statistician obtaining a " 90% credible interval" from the posterior distribution; if you did that, then you can make the statement, but not otherwise.)
(d) (3 marks) Figure 4 also contains a hypothesis test. Give the null and alternative hypotheses for this test, defining any symbols that you use. Also, what do you conclude in the context of the data?

My answer: Let μ be the mean rating on this task for all ADHD boys. (That is, the population mean that is being estimated here.) The null hypothesis is $H_{0}: \mu=2.35$, and the alternative hypothesis is $H_{a}: \mu \neq 2.35$ (two-sided since I didn't say otherwise in the code).
At $\alpha=0.05$ (you should say or imply what α you are using), the P -value is less than α, so we can reject the null hypothesis in favour of the alternative: that is, we conclude that the mean rating on this task is not 2.35 for all boys with ADHD. (If you chose $\alpha=0.01$, which is fine, you cannot reject the null, and then you have to say "there is no evidence that the mean score on this task for all boys with ADHD differs from 2.35".)
(e) (3 marks) R obtained a P-value for the test in Figure 4. Describe the process by which you would obtain a P-value for this test using either statistical tables or an R function other than t.test. I don't want a numerical answer, just a description of the process. Use the fact that the t-distribution with large degrees of freedom can be closely approximated by a standard normal distribution. Your normal table, if you go that way, gives the probability of observing a value less than the given z.

My answer: The strategy is to find the probability of a value as extreme or more extreme than the one observed. The observed value is the t statistic of -2.4834 (on the P -value line of the output).
Your normal table gives you the probability of obtaining a value less than -2.48 , which is what you want, since less is more extreme. My table gives 0.0066 . The test was two-sided, though, so I have to double that, giving 0.0132. (You won't have numbers, but you need to say "find the probability of less than -2.48 and then double it". My value is very close to the exact 0.0136 that came out of $t . t e s t$.
With R, you use pnorm, and the probability of a value less than -2.4834 is this:
$R>$ prob=pnorm (-2.4834)
R> prob
[1] 0.006506743
and again multiply by 2 to get the two-sided P -value:
R> prob*2
[1] 0.01301349
which is basically the same as t.test. The answer using the normal distribution is in each case off by a bit, but not nearly enough to make us change our conclusion.
If you're wondering, pnorm will handle any normal distribution; you give the mean and SD (if they are not 0 and 1) afterwards, thus the probability of a value less than 40 in normal distribution with mean 50 and SD 10 is

R> pnorm $(40,50,10)$
\qquad of possible 6 points.

[1] 0.1586553

or you could have turned 40 into $z=(40-50) / 10=-1$ and done:
R> pnorm(-1)
[1] 0.1586553
to get the same answer. This is the 16% that would have come out of the 68-95-99.7 rule.
\qquad of possible 0 points.
4. I have a spreadsheet that contains names and information about different types of coffee drinks served in a certain coffee shop. Some of the spreadsheet is shown in Figure 5 of the booklet of code and output. I want to read this information into SAS.
(a) (4 marks) Tell me how to get the data in the spreadsheet into SAS Studio so that (in the next part) it can be read into a SAS data set. You need to provide enough detail so that I can reproduce your process myself and end up with some kind of file in SAS Studio. (You can assume that I know how to do basic spreadsheet operations.)

My answer: 2017: my current preferred method is to upload the .xlsx spreadsheet file from my computer to SAS Studio, and then to use the proc import at the bottom of my answer to (b). An alternative is to save the file as .csv, then upload it to SAS Studio, then read in with dbms=csv. (The implication is that the spreadsheet is on your computer, or mine, currently.)
2015: There are several steps in what I think is the best solution:

- Save the data from the spreadsheet in .csv format.
- Open the .csv file in something like Notepad (or even R Studio, strange though this may seem: the point is that you need something that will display the file as it is, which spreadsheet software won't).
- Copy the data from there into SAS Studio.
- Save and rename the file as usual. (An alternative to these steps is to upload the .csv file to SAS Studio. That avoids having to rename it.)

See the solution to the next part for more discussion, including some things that won't work and other ideas that will work. If you come up with anything that will work (as well as this), you'll get full credit. (The two parts of this question work together: if your whole process produces a suitable SAS data set, that's good: you can rescue what I think is a sub-optimal (a) by an excellent (b).)
(b) (3 marks) Give code that will read the file that you saved on SAS Studio into a SAS data set, preserving the names of the coffee drinks as well as possible. Depending on what you did in the previous part, your code might be quite simple.

My answer: 2017: use the proc import described at the end, or the corresponding thing for reading in a .csv file if that's what you made.
2015: This reads the .csv file that I created in the last part:

```
SAS> data coffees;
SAS> infile '/home/ken/starbucks.csv' firstobs=2 dlm=',';
SAS> input product $ calories fat carbs fibre protein;
```

To verify that this works at least reasonably well:

SAS> proc print;						
Obs	product	calories	fat	carbs	fibre	protein
1	Caffe La	190	7.0	18	0	12
2	Caffe Mo	260	8.0	41	2	13
3	Cappucci	120	4.0	12	0	8
4	Caramel	240	7.0	34	0	10
5	Cinnamon	260	6.0	40	0	11

\qquad of possible 0 points.
as you can type a comma; the way around it is to know or find out that the tab character has (ASCII) hex code 09, so that this works:

$\begin{aligned} & S A S> \\ & S A S> \end{aligned}$	infile '/home/ken/starbucks2.txt' firstobs=2 dlm='09'x; input product $\$$ calories fat carbs fibre protein;					
SAS>						
SAS> proc print;						
Obs	product	calories	fat	carbs	fibre	protein
1	Caffe La	190	7.0	18	0	12
2	Caffe Mo	260	8.0	41	2	13
3	Cappucci	120	4.0	12	0	8
4	Caramel	240	7.0	34	0	10
5	Cinnamon	260	6.0	40	0	11
6	Flavoure	250	6.0	36	0	12
7	Iced Caf	130	4.5	13	0	8
8	Iced Caf	200	6.0	35	2	9
9	Iced Car	230	6.0	33	0	10
10	Iced Cin	200	4.0	34	0	7
11	Iced Fla	250	6.0	36	0	12
12	Iced Pep	260	6.0	52	2	8
13	Iced Pep	400	9.0	72	0	10
14	Iced Pum	250	4.0	44	0	10
15	Iced Ski	110	4.0	12	0	7
16	Iced Tof	280	3.5	51	2	12
17	Iced Whi	340	9.0	55	0	10
18	Peppermi	330	8.0	57	2	12
19	Peppermi	470	12.0	78	0	14
20	Pumpkin	310	6.0	49	0	14
21	Skinny C	180	6.0	18	0	12
22	Skinny F	180	6.0	18	0	12
23	Toffee M	350	7.0	58	2	17
24	White Ch	400	11.0	61	0	15

To show you that expandtabs won't work, let's start with starbucks2.txt, which came from copying and pasting the spreadsheet data:

```
SAS> data ugh;
SAS> infile '/home/ken/starbucks2.txt' firstobs=2 expandtabs;
SAS> input product $ calories fat carbs fibre protein;
SAS>
SAS> proc print;
\begin{tabular}{rlcrcrc} 
Obs & product & calories & fat & carbs & fibre & protein \\
1 & Caffe &. & 190 & 7 & 18.0 & 0 \\
2 & Caffe &. & 260 & 8 & 41.0 & 2 \\
3 & Cappucci & 120 & 4 & 12 & 0.0 & 8 \\
4 & Caramel &. & 240 & 7 & 34.0 & 0 \\
5 & Cinnamon &. &. & 260 & 6.0 & 40 \\
6 & Flavoure &. & 250 & 6 & 36.0 & 0 \\
7 & Iced &. &. & 130 & 4.5 & 13
\end{tabular}
```

\qquad of possible 0 points.

8	Iced	.	.	200	6.0	35
9	Iced			230	6.0	33
10	Iced		.	.	200.0	4
11	Iced	.	.	250	6.0	36
12	Iced	.	.	260	6.0	52
13	Iced	400
14	Iced	.	.	.	250.0	4
15	Iced	.	.	.	110.0	4
16	Iced	.	.	280	3.5	51
17	Iced	.	.	.	340.0	9
18	Peppermi	.	330	8	57.0	2
19	Peppermi	.	.	.	470.0	12
20	Pumpkin	.	.	310	6.0	49
21	Skinny	.	.	.	180.0	6
22	Skinny	.	.	180	6.0	18
23	Toffee		350	7	58.0	2
24	White	.		400	11.0	61

What has happened is that SAS is trying to use one or more spaces to separate one variable from the next. When the name of the drink has no spaces in it, everything is good (line 3, the name is just "Cappuccino"). But when the name of the drink is two words, SAS uses the second word as the value for Calories, which fails since that should be a number, then uses the number for Calories as the value for Fat, and so on, off by one all the way down the line. If the name of the drink has three words, there are two words that can't be numbers, and then everything is off by two columns from there on. And so on. Ugly.
A third way around this is to use proc import, which is described in the SAS text, pages 65-67 (in my edition). I don't expect you to know this, but if you have discovered it and can properly describe how to make it work, you get full credit.
The first thing is to upload the Excel version of the SAS spreadsheet to SAS Studio. (You have to upload it, rather than copying and pasting, because the internal format of an Excel spreadsheet contains all sorts of special characters that won't properly copy and paste.) I uploaded the spreadsheet to starbucks.xls (it was an ancient spreadsheet). Then:

```
SAS> proc import out=coffees datafile='/home/ken/starbucks.xls' dbms=xls replace;
SAS> sheet="Sheet1";
SAS> getnames=yes;
SAS>
SAS> proc print;
Obs Product 
    Caffe Latte 
    Cappuccino 120
    Caramel Macchiato 240
    Cinnamon Dolce Latte 260
    Flavoured Latte 250
    Iced Caffe Latte 130
    Iced Caffe Mocha 200
    Iced Caramel Macchiato 230
    Iced Cinnamon Dolce Latte 200
    Iced Flavoured Latte 250
    Iced Peppermint Mocha 260
    Iced Peppermint White Chocolate Mocha 400
    Iced Pumpkin Spice Latte 250
```

\qquad of possible 0 points.

That works, and has the additional benefit of reading the full product names, rather than chopping them off after 8 characters. (I'm now thinking I should have shown you this in class.) The stuff in the code is:

- out=: the name of the SAS dataset, that would otherwise go on the data line
- datafile=: where the spreadsheet is on SAS Studio, specified the same way as any other file
- dbms: the kind of Excel file. If you have an .xls file (from an older edition of Excel), replace xlsx by xls throughout.
- replace: replace any SAS data set of the same name by this one (which you usually want to do, rather than, say, appending to the end)
- sheet=: which sheet you want in the workbook, by name. I didn't change the name, so mine is the default Sheet1.
- getnames=yes: top row is variable names (like header=T in R).
\qquad of possible 0 points.

My edition of the text offers dbms=excel, which no longer works, but I will also accept that. (It dates, I think, from before the . xlsx format existed.)
If you do it this way, you won't have to do much in (a), but you'll have some extra work in (b). If it's all good, you get all the points.
\qquad of possible 0 points.
5. A student suspected that files might take longer to download at certain times of the day. To examine this, he placed a file on a server, and then, at certain times of the day on randomly chosen days, he downloaded the file and noted how many seconds it took. The times of day were 7:00am (denoted "early" in the data set), $5: 00 \mathrm{pm}$ ("evening") and midnight ("late"). The data are shown in the booklet of code and output as Figure 6. Some analysis is shown in Figure 7 and Figure 8.
(a) (1 mark) In Figure 7, what null hypothesis is being tested?

My answer: The null hypothesis is that the mean download time is the same for all the different times of day. (Or, that time of day has no impact on download time. I like this second one because it makes ANOVA look like regression: "does the time of day help in predicting download time?". I always liked regression better than ANOVA.)
Or you can do it with symbols, as long as you define them, eg. let μ_{1} be the population mean early download time, μ_{2} be the population mean evening download time, and let μ_{3} be the population mean late download time. Then the null hypothesis is $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}$. But you have to define your symbols.
(b) (1 mark) In Figure 7, what alternative hypothesis is being tested?

My answer: The mean download times at different times of day are not all the same. Or that time of day has some effect on download time. You have to be careful about this: "the mean download times are different" is not clear enough, because do you mean that they are all different, or that some of them are different? (Two the same and one different belongs to the alternative hypothesis.)
It's difficult to write the alternative hypothesis here with symbols. "It is not true that $\mu_{1}=$ $\mu_{2}=\mu_{3} "$ is about the best I can do.
(c) (2 marks) What do you conclude from the analysis of Figure 7?

My answer: The P-value is less than 0.05 (or 0.01 or whatever α you used), so that we reject the null hypothesis and conclude that the mean download times are not all the same.
This is as far as we can go, until we look at Tukey.
(d) (2 marks) Why is the analysis in Figure 8 worth doing? Explain briefly.

My answer: This is Tukey's method. We rejected the null hypothesis, so we know that there are some differences between times of day to find. Tukey's method will help us figure out which times of day differ from which in terms of mean download times.
(e) (2 marks) What do you conclude from Figure 8?

My answer: All three Tukey P-values are less than 0.05 (one of them is even zero to the accuracy shown). So now we can conclude that all three times of day have different mean download times.
(f) (2 marks) Which time of day has quickest downloads, on average? Is it significantly quicker than all the other times of day? (Note that a small time goes with a quick download.)

My answer: This requires a bit of detective work with the Tukey output. The Difference column is the difference between sample means for the groups being compared. Thus, evening
\qquad of possible 10 points.
is slower than early, late is slower than early, and late is quicker than evening. Early is quicker than everything else.
Because all three times of day differ significantly, early must be significantly quicker than everything else.
(g) (2 marks) Look at Figure 9 of the booklet of code and output, which shows the distributions of download times at each different time of day. Concerning your conclusions above, do you have (i) no doubts, (ii) moderate doubts or (iii) severe doubts about their validity? Explain briefly.

My answer: This is asking about the assumptions underlying the analysis of variance that we just did. The assumptions are that we have normally-distributed data with equal spreads in the three groups. (Like the t-tests, ANOVA can handle moderate departures from these assumptions).
I'd say that the boxplots indicate roughly equal spreads (the IQRs or box heights are more or less equal), and the evening and late times have symmetric distributions, but the early download times are noticeably right-skewed. There are, however, no outliers.
I actually think the ANOVA may be able to handle this amount of skewness (with 16 observations in each group), but probably the best response is to have moderate doubts. Not severe doubts, because the assumptions are not seriously violated.
\qquad of possible 2 points.
6. In Question 5, we looked at an analysis of download times for a file downloaded at different times of day. Figures 7 and 8 showed the output from the analyses, but the code was not shown. Your job in this question is to give the code. You may assume that the data in Figure 6 have already been read into a data frame dl.
(a) (4 marks) What two or three lines of R code will produce the output in Figure 7?

My answer: I have to read in the data first, so that I can show you that my code works, but you don't need to do that. The two lines below that, or equivalent to them, are what you need:

```
R> dl=read_delim("downloads.txt"," ")
R> dl.1=aov(seconds~timeofday,data=dl)
R> summary(dl.1)
Parsed with column specification:
cols(
    timeofday = col_character(),
    seconds = col_integer()
)
lren Df Sum Sq Mean Sq F value 
Residuals 45 100020 2223
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' , 1
```

(b) (2 marks) What one or two lines of R code will produce the output in Figure 8 ?

My answer: One line (to produce the Tukey) is all you need:

```
R> TukeyHSD(dl.1)
    Tukey multiple comparisons of means
        95% family-wise confidence level
Fit: aov(formula = seconds ~ timeofday, data = dl)
$timeofday
evening-early 159.9375
late-early 79.6875 39.28988 120.08512 5.57e-05
late-evening -80.2500 -120.64762 -39.85238 4.99e-05
```

That's all, but you need to get the capitalization in the right places!
7. Arsenic is toxic to humans. People can be exposed to it through contaminated drinking water, food, dust and soil. A new way of examining a person's exposure to arsenic is to examine their toenail clippings. Levels of arsenic, in parts per million, measured from the toenail clippings of 19 people in New Hampshire, are shown in Figure 10 in the booklet of code and output. A boxplot of the arsenic levels is shown in Figure 11.
(a) (2 marks) Why would a sign test be better here than a t-test here as a test of "centre" or "location"? Explain briefly but precisely. (I am looking for two points.)
\qquad of possible 8 points.

My answer: The boxplot shows noticeable skewness and two big outliers, so that the median would be a better description of centre or location than the mean would. (One thing.) The sign test does inference for the median, and therefore is better here than the t-test, which does inference for the mean (second thing).
The two crucial things are that the median is better than the mean, and the sign test is the one that tests the median.
(b) (2 marks) I read the data into a SAS data set containing a variable named arsenic. Give SAS code that will obtain a sign test that the median is 0.400 (against a two-sided alternative).

My answer: I'm including my (2015) reading of the file (which you don't need). What you do need is the proc univariate at the bottom of the code below. The var line is actually optional here, since there is only one variable.

```
SAS> data toenails;
SAS> infile '/home/ken/arsenic.txt';
SAS> input arsenic;
SAS>
SAS> proc univariate location=0.400;
SAS> var arsenic;
The UNIVARIATE Procedure
Variable: arsenic
\begin{tabular}{lrlr} 
& \multicolumn{2}{c}{ Moments } \\
N & 19 & Sum Weights & 19 \\
Mean & 0.27189474 & Sum Observations & 5.166 \\
Std Deviation & 0.23653797 & Variance & 0.05595021 \\
Skewness & 1.62668256 & Kurtosis & 1.94023175 \\
Uncorrected SS & 2.411712 & Corrected SS & 1.00710379 \\
Coeff Variation & 86.9961556 & Std Error Mean & 0.05426553
\end{tabular}
\begin{tabular}{llll}
\multicolumn{4}{c}{ Basic } \\
\multicolumn{4}{c}{ Ltatistical Measures } \\
Location & \multicolumn{1}{c}{ Variability } \\
Mean & 0.271895 & Std Deviation & 0.23654 \\
Median & 0.158000 & Variance & 0.05595 \\
Mode & 0.118000 & Range & 0.77800 \\
& & Interquartile Range & 0.24000
\end{tabular}
        Tests for Location: MuO=0.4
Test -Statistic- -----p Value------
Student's t t -2.36071 Pr > |t| 0.0297
Sign M -5.5 Pr >= |M| 0.0192
Signed Rank S -53 Pr >= |S| 0.0317
Quantiles (Definition 5)
Level Quantile
100% Max 0.851
99% 0.851
95% 0.851
90% 0.832
75% Q3 0.358
50% Median 0.158
```

25\% Q1		0.118	
10\%		0.080	
5\%		0.073	
1\%		0.073	
0\% Min		0.073	
Extreme Observations			
-----Lo	--	----Hig	
Value	Obs	Value	Obs
0.073	11	0.358	6
0.080	7	0.433	16
0.099	3	0.517	13
0.105	10	0.832	12
0.118	4	0.851	14
Instead of location, you can say mu0, which is equally good. (I wrote in the appropriate assignment solutions about why I prefer location for myself, but mu0 works just as well, so it gets full marks too.)			

(c) (1 mark) The output is quite lengthy. Tell me something that would be next to the sign test in the output so that I can find it more easily. (No explanation needed.)

My answer: The sign test comes in a section called "Tests for location", next to the t-test that the mean is 0.400 . Saying either of those things is good. (I was intending you to say "next to the t-test", but "in with the Tests for Location" is equally good.)
(d) (2 marks) Figure 12 shows an R function I wrote that will take a hypothesized median and run the sign test for that hypothesized median on the input data. It returns the two-sided P -value for the sign test in question. Figure 13 shows the P -value of the sign test on the arsenic data for various different null medians. What is the P-value for the test that you gave code for in (b)? What do you conclude about the median from this?

My answer: Just read off the P-value for the 0.40 line: 0.0192 . This means that at $\alpha=0.05$ we reject the null hypothesis that the median is 0.40 , in favour of the alternative that it is not 0.40 .
(e) (3 marks) Use the output in Figure 13 to obtain a 90% confidence interval for the population median. Explain briefly how you obtained your interval.

My answer: We need to use the idea that the confidence interval contains all the population medians that are not rejected at the right α by the test. Since we want a 90% CI, $\alpha=0.10$, and thus the confidence interval goes from 0.12 to 0.31 , since these are the values of the population median with P -values greater than 0.10 .
\qquad of possible 6 points.
8. The cardiovascular system in humans consists of the heart and blood vessels, which circulate blood around the body. It is important that this system operates properly, and there are a number of "risk factors" that might prevent it from doing so. One of these risk factors is a sedentary lifestyle.
One study compared a group of runners (who averaged at least 15 miles per week of running) with a control group of "generally sedentary" people. The gender of each person was also noted. The outcome variable was the number of heart beats per minute after running on a treadmill for 6 minutes. The dataset we will use for this question is shown in Figure 14. (This is an excerpt of a much larger dataset.)
In this question, we will be using the R package dplyr. (2017 note: dplyr is part of the tidyverse.) You can assume for this question that the package has already been installed (with install.packages) and loaded (with library). The data have been read into a data frame called runners. Give code (using dplyr tools) to accomplish the following tasks. You should need no more than three lines of code in each case, and each part can be done with two lines or fewer:
(a) (2 marks) Display the runners, but not the "generally sedentary" people.

My answer: Here, and below, if you manage to obtain a solution that does not use dplyr tools, you can expect to get about half marks.
I need to read in the data first, and load dplyr, though of course you don't:

```
R> runners=read_tsv("runners.txt")
R> runners
Parsed with column specification:
cols(
    id = col_integer(),
    group = col_character(),
    sex = col_character(),
    beats = col_integer()
)
# A tibble: 800 x 4
        <int> <chr> <chr><int>
        <int> <chr> <chr> <int>
1 1 Control Female 159
2 2 Control Female 183
3 Control Female }14
4 Control Female }14
5 5 Control Female 125
6 6 Control Female }15
7 7 Control Female }14
8 Control Female 132
9 9 Control Female 158
10 10 Control Female 136
# ... with 790 more rows
```

Selecting individuals (rows) is done with filter, and the variable that distinguishes the runners from the rest is group. Here and below we only see the top 10 lines of the result; if you wanted to see them all, you could add a print ($n=\operatorname{Inf}$) to the pipeline:

```
R> runners %>% filter(group=="Runners")
# A tibble: 400 x 4
    id group sex beats
```

\qquad of possible 2 points.

	401 Runners Female	119
2	402 Runners Female	84
3	403 Runners Female	89
4	404 Runners Female	119
5	405 Runners Female	127
6	406 Runners Female	111
7	407 Runners Female	115
8	408 Runners Female	109
9	409 Runners Female	111
10	410 Runners Female	120
\# ... with 390 more rows		

(b) (3 marks) Display just the genders of the people that have beats less than 100 .

My answer: This is filter again, but this time followed by a select to get the sexes:

```
R> runners %>% filter(beats<100) %>%
R> select(sex)
# A tibble: 120 x 1
            sex
        <chr>
1 Male
2 Male
3 Male
4 Male
5 Male
6 Male
Male
Male
9 ~ M a l e
10 Male
# ... with 110 more rows
```

Having the select first would not have worked, since then there is no column beats left to select the values less than 100 from.
The obvious thing to do would have been to count these, but I already had a summarize question (later). Had I wanted to do so (and to demonstrate that some of the people with a low heart rate were actually female), I could have done this:

```
R> runners %>% filter(beats<100) %>%
R> count(sex)
# A tibble: 2 x 2
    sex n
    <chr> <int>
1 Female 30
2 Male 90
```

The select is no longer necessary, since none of the other columns got displayed anyway.
(c) (3 marks) Obtain the mean and standard deviation of beats for both the runners and the sedentary people.
\qquad of possible 6 points.

My answer: Since we are doing this for both groups, we need a group_by first:

```
R> runners %>% group_by(group) %>%
R> summarize(mean=mean(beats), sd=sd(beats))
# A tibble: 2 x 3
    group mean sd
    <chr> <dbl> <dbl>
1 Control 139.00 18.94961
2 Runners 109.98 15.53376
```

To no-one's great surprise, the heartbeats are typically quite a lot lower for the runners than the sedentary people.
\qquad of possible 0 points.
9. Does logging (cutting down trees) in an area have an effect on the number of tree species present some years later? A study of logging in Borneo looked at 12 forest plots that had never been logged, and 9 (otherwise similar) plots that had been logged 8 years earlier. Some code and output is shown in Figures 15 through 17. 2017 note: this year we are not doing randomization tests, but you should think about what kind of test you would do instead.
(a) (2 marks) Why, looking at the Figures, would you have doubts about doing a two-sample t-test to compare the tree species in the two types of plots? How would a randomization test be better? Explain briefly.

My answer: Look at the boxplot in Figure 15. There are outliers: one high one among the unlogged plots and one low one among the logged plots. (This could exaggerate the difference between the two groups: it would increase the difference between the means, but would also increase the SDs within the groups.)
The randomization test does not assume normality within the two groups, so its P -value can be trusted even when there are outliers.
2017: Mood's median test does not assume normality within the two groups, so would be a reasonable test to do here as well. I did Mood's median test in the solution to the last part.
(b) (3 marks) Describe briefly how the function in Figure 16 does something different from the first two lines of that Figure. (You can do this by describing what they each do, and then explaining how they are different.)

My answer: The first two lines calculate the difference in group means for the observed data, and the function calculates the difference in group means for the randomly shuffled data. It's the same calculation, but on different data.
(c) (2 marks) What does the top line of Figure 17 calculate, and how does it do it (in general terms, not in detail?)

My answer: It obtains the randomization distribution of the difference in means. It does this by calculating the difference in means between the shuffled groups (from Figure 16) and repeating this 1000 times.
(d) (2 marks) The research hypothesis was that a logged plot would have fewer tree species present 8 years later than an unlogged plot. Explain how the histogram in Figure 18 supports this hypothesis.

My answer: The observed mean difference was calculated as logged minus unlogged (this is alphabetical order in status). The observed mean difference is negative, which is what you would expect if the research hypothesis is true. Not only that, it is more negative than most of the randomization distribution (which was calculated under the hypothesis that logging had no effect.)
(e) (2 marks) Obtain a suitable P-value for the randomization test from Figure 17. What do you conclude in terms of the effect of logging?

My answer: The test is one-sided (logging can only decrease the number of tree species, not increase it), so the P-value is simply $18 / 1000=0.018$.
On this evidence, logging does decrease the mean number of tree species present in a plot. (The P -value is less than 0.05 , so we reject the null hypothesis that logging has no effect in favour of the alternative that logging decreases the mean number of tree species.)
\qquad of possible 11 points.

2017: we would do a Mood's median test, which in R can be done with the smmr package (or by piecing it together yourself):

```
R> borneo=read_delim("borneo.txt"," ")
R> borneo
R> library(smmr)
R> median_test(borneo,species,status)
Parsed with column specification:
cols(
    status = col_character(),
    species = col_integer()
)
# A tibble: 21 x 2
            status species
                <chr> <int>
    1 unlogged 32
2 unlogged 22
3 unlogged 15
4 unlogged 13
    5 unlogged 19
    6 unlogged 19
7 unlogged 18
8 unlogged 20
    9 unlogged 21
10 unlogged 13
# ... with 11 more rows
$table
            above
group above below
    logged 3 4
    unlogged 7 3
$test
            what value
    statistic 1.2524490
                df 1.0000000
P-value 0.2630853
```

Most of the unlogged plots have an above-average number of species, whereas for the logged plots the number of species could be above or below the overall median. (In case you are wondering how that is possible: there are 21 plots altogether, but only 17 in the table, which means that 4 of the plots must have had a number of species exactly equal to the overall median and were thus discarded from the analysis.)
This test should be done two-sided, since we are looking for "an effect" without saying anything about which way it goes. The table says the effect is quite small, since the table doesn't look all that unbalanced, and the two-sided P -value is 0.2631 says that we are nowhere near rejecting a null hypothesis that the median number of species in the two types of plot is the same.
This is a substantial difference from the randomization test, which was based on the means; if you look at the boxplot, you'll see that each group has one outlier, but they are in opposite directions, so there is the potential for the difference in means to be either very small or very large. With the data as they are, the difference in means (logged minus unlogged) will be at
\qquad of possible 0 points.
the negative end of the distribution of possible values, whereas there might not be anything interesting in the comparison of medians.
Let's see whether the Mood's median test calculation makes any sense in the light of the boxplot, Figure 15:

```
R> borneo %>% summarize(med=median(species))
# A tibble: 1 x 1
        med
    <int>
15
```

The overall median is 15 . This is also the median of the logged values, so about half of them should be above and half below the overall median. This is what the Mood's median test table says. For the unlogged values, the overall median of 15 is down near the first quartile, so not quite 75% of the values in that group should be above and a little more than 25% should be below. This is also supported by the table.
Final thoughts: what about those values equal to the overall median? Let's include them in our summary:

```
R> borneo %>%
R> mutate(where=case_when(
R> species<15 ~ "below",
R> species==15 ~ "equal",
R> species>15 ~ "above")) %>%
R> group_by(status,where) %>%
R> count()
# A tibble: 6 x 3
# Groups: status, where [6]
        status where n
        <chr> <chr> <int>
1 logged above 3
2 logged below 4
3 logged equal 2
4 unlogged above 7
5 unlogged below 3
6 unlogged equal 2
```

Each group had two values exactly equal to the overall median, which meant that out of the original 21 values, only 17 remained for the test (seven in the logged group, and 10 in the unlogged group). This also explains how one group could be about 50-50 above and below the overall median and the other group could be mostly above: overall, there are 10 observations above the overall median, only 7 below, but four exactly equal, and because of this, 15 is the best value for the overall median.
\qquad of possible 0 points.

