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1. Participants in an experiment pretended to be members of a college disciplinary panel judging students
accused of cheating. For each suspect, along with a description of the offence, a picture was provided
with either a smile or neutral facial expression. Each participant said what they thought was a suitable
punishment based on the evidence they had seen and a leniency score was calculated based on the
disciplinary decisions made by the participants. (A higher leniency score means a smaller punishment.)
The facial expression in the picture was also recorded, in Group.

The data file is shown in Figure 2, and is in the file smiles.txt in the same folder as your current R
Studio project.

(a) [3] What R code would read the data from the file into a dataframe called smiles and display (at
least some of) that dataframe?

My answer:

These are aligned columns with variable numbers of spaces in between, and read_table is what
we used to read in this kind of thing:
smiles <- read_table("smiles.txt")

-- Column specification --------------------------------------------------------
cols(
Group = col_character(),
Leniency = col_double()

)
smiles

Group Leniency
neutral 6.0
smile 3.5
smile 4.5
smile 6.0
smile 4.0
neutral 2.5
smile 7.5
smile 2.5
smile 3.5
neutral 4.0
neutral 2.5
neutral 4.5
smile 3.5
smile 9.0
neutral 3.0
smile 3.0
smile 5.0
neutral 4.5
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smile 5.5
smile 5.0

Don’t forget to add the name of the dataframe to display it!

Any other way of displaying at least some of the dataframe, such as glimpse (that I used with
the Blue Jays data in lecture) or slice-ing off the first few rows, is acceptable, but just adding
the name of the dataframe is definitely enough.

Because the number of spaces between the group name and the leniency score is not constant,
any kind of read_delim is not going to work. Also, if the data values were tab-separated, the
Leniency numbers would be aligned on the left rather than on the right as they actually are.

Two (generous) points for correct code to read the file, and one point for code to display the
dataframe in some reasonable way. read_delim is only 0.5 out of two even if you get the
filename correct.

(b) [3] What code will make a suitable graph of the two variables in your dataframe? Justify your
choice of graph briefly.

My answer:

One categorical variable Group and one quantitative one Leniency, so the obvious thing is a
boxplot. One point for something like that, including “boxplot” and saying which variable is
categorical and which is quantitative (to show that you know). The other two points are for
the graph code; see below for the scale.

The plot is this:
ggplot(smiles, aes(x = Group, y = Leniency)) + geom_boxplot()
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The aim of the study was to compare leniency scores for the two groups of supposed student
offenders, and that is what the boxplot does, so I think this is the best graph.

As a (slightly inferior) graph, you might take the attitude that the key variable was Leniency
and that Group is an “extra categorical variable”, so that you could do histograms of Leniency
facetted by Group:
ggplot(smiles, aes(x = Leniency)) + geom_histogram(bins = 6) +
facet_wrap(~ Group)
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Remember in these ones, you don’t mention the variable you’re going to facet by until right at
the end.

I think it’s better to use a few more bins than you normally would, on the basis that the bins
are used for both histograms and (as it turns out) the neutral values don’t go up as far and
you don’t get much of a picture of their shape with, say, 6 bins.

On the basis that we really want to compare these two histograms, it is better to put them
above and below with a common Leniency scale, thus, using one “column of plots”:
ggplot(smiles, aes(x = Leniency)) + geom_histogram(bins = 6) +
facet_wrap(~ Group, ncol = 1)
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Even with this, though, it’s not very easy to compare “typical” leniency scores between the
two groups. If you were assessing the shapes of these two distributions, you could make a case
for this being the best graph (boxplots don’t show shape very well), but the aim of the study
was to see whether punishments are less (leniency scores are higher) on average for the smile
group, and for that a boxplot is a better graph.

For the graphing part, two points for a boxplot, one point for an above-and-below histogram,
0.5 for a side-by-side histogram, less any deductions for errors.

(c) [3] What code would work out the number of observations in each group, along with the mean
leniency score of each group?

My answer:

This is not the kind of case where count will work, because you are calculating something else
(the mean) along with doing the counting. So you have to use the n() idea, like this:
smiles %>%
group_by(Group) %>%
summarize(n = n(), mean_len = mean(Leniency))

Group n mean_len
neutral 7 3.857143
smile 13 4.807692
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Give the summaries whatever names you like, but n is a good name for the number of observa-
tions, and something with mean in it is a good name for the mean.

One point for the right group_by, and two points for a summarize with the right two things in
it.

Extra: As it turns out, there are only seven observations in the neutral group (where the
students had a neutral facial expression in their photo), with 13 in the smile group. This was
not actually all of the original data; I took a random sample from that dataset, so that I could
show you all of the data we used here (in Figure 2) to help you decide how you were going to
read the values into a dataframe.

(d) [3] What code would display the leniency scores (only) that are (strictly) less than 4 and for
observations with a neutral facial expression?

My answer:

This uses filter to select the rows you want, with a select at the end to display the column
you want:
smiles %>%
filter(Leniency < 4, Group == "neutral") %>%
select(Leniency)

Leniency
2.5
2.5
3.0
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Have two filters one after the other if you prefer, but the select must come at the end, because
if it comes before, you won’t have a Group column to filter on.

I suppose you could also do this:
smiles %>%
filter(Group == "neutral") %>%
select(Leniency) %>%
filter(Leniency < 4)

Leniency
2.5
2.5
3.0

so that you are only selecting columns after you are done with the ones you are not selecting.

Points: one each for the two filters (together or separately), and one for the select (in a sensible
place in your code).

A (hopefully) gentle warmup from the first half of the course.
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2. Chromium has been identified as a carcinogen and pollutant. Indoor and outdoor measurements of
chromium concentrations (in nanograms per cubic metre) were obtained for a sample of 33 houses in
southwestern Ontario, as shown in the dataframe chromium in Figure 3. I calculated the column delta
as the difference, indoor minus outdoor. Each House was numbered. The researchers are interested in
any differences between indoor and outdoor measurements.

(a) [2] How do you know that these are matched pairs data? Explain briefly.

My answer:

Each house produced two measurements, an indoor one and an outdoor one. Or, each indoor
measurement is paired up with an outdoor one, namely the one that belongs to the same house.

Be specific here about what is paired up with what, and what the individuals are in this case
(houses). If your answer is not specific enough, expect one point at best.

(b) [3] Three normal quantile plots are shown in Figures 4 through 6. Based on the information in the
appropriate one(s) of these plots, would you use a matched-pairs 𝑡 procedure (test or confidence
interval), or not? In your answer, state clearly which Figure or Figures you are referring to.

My answer:

A matched-pairs 𝑡 procedure will be appropriate if the differences between the two observations
for each individual are close enough to normally distributed, given the sample size. The distri-
butions of the indoor and outdoor measurements individually are irrelevant. So we only need
to look at Figure 6 and ignore the other two Figures.

According to Figure 6, the distribution of differences is either (i) close to normal itself, or (ii)
slightly skewed to the left. But we have a sample size of 33 (houses), so we can expect a lot of
help from the Central Limit Theorem here. Hence the distribution of differences is close enough
to normal, and using a matched-pairs 𝑡 will have no problems.

So:

• look at Figure 6 and conclude that it is close to normal or slightly skewed to the left
• don’t look at Figures 4 or 5 at all
• note that the sample size of 𝑛 = 33 is going to be large enough to overcome any non-

normality you see. Remember there is nothing magic about 𝑛 = 30, and it is an error to
pretend that 𝑛 = 30 is special. I suspect that even a sample size of 20 would be large
enough in this case, since any non-normality is mild at worst.

One point for mentioning (or appropriately not mentioning) each of those three things. That
is to say, if you try to interpret Figures 4 or 5 at all, expect to lose a point.

Extra: if you don’t believe me, allow me to show you a bootstrap sampling distribution of the
sample mean:

Loading required package: lattice
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tibble(sim = 1:10000) %>%
rowwise() %>%
mutate(my_sample = list(sample(chromium$delta, replace = TRUE))) %>%
mutate(my_mean = mean(my_sample)) %>%
ggplot(aes(sample = my_mean)) + stat_qq() + stat_qq_line()
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I did 10,000 simulations because I wanted to use a normal quantile plot to assess normality and
I didn’t want to get deceived by the tails.

As you see, this is extremely close to normal, providing further confirmation that 𝑡 is fine here.

(c) [3] What code would run a suitable 𝑡-test and obtain a 99% confidence interval for the difference in
means between indoor and outdoor measurements? (Do this even if you previously concluded that
you should run something other than a 𝑡 procedure.)

My answer:

The appropriate test is two-sided (see the last sentence of the question), and so you can do the
test and confidence interval in one shot (best). There are two choices, the classical paired way:
with(chromium, t.test(Indoor, Outdoor, paired = TRUE, conf.level = 0.99))

Paired t-test
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data: Indoor and Outdoor
t = -5.9509, df = 32, p-value = 1.251e-06
alternative hypothesis: true mean difference is not equal to 0
99 percent confidence interval:
-0.5929216 -0.2191996
sample estimates:
mean difference

-0.4060606

or as a one-sample 𝑡-test on the differences, which will mean putting in a null mean difference
(or explaining why you don’t need one):
with(chromium, t.test(delta, mu = 0, conf.level = 0.99))

One Sample t-test

data: delta
t = -5.9509, df = 32, p-value = 1.251e-06
alternative hypothesis: true mean is not equal to 0
99 percent confidence interval:
-0.5929216 -0.2191996
sample estimates:
mean of x
-0.4060606

It actually works without a mu:
with(chromium, t.test(delta, conf.level = 0.99))

One Sample t-test

data: delta
t = -5.9509, df = 32, p-value = 1.251e-06
alternative hypothesis: true mean is not equal to 0
99 percent confidence interval:
-0.5929216 -0.2191996
sample estimates:
mean of x
-0.4060606

but if you do it this way, you will need to say that a null mean of zero is the default (otherwise,
it looks as if you don’t know what the null mean is).

In addition to all of these possibilities, if you don’t like with, you can use dollar signs throughout
(chromium$delta and so on), though this starts to get wordy if you do it as a paired test.

In summary, one of these:
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• Use t.test with the Indoor and Outdoor columns named and paired = TRUE, either us-
ing with or (two) dollar signs to get the columns from the right dataframe, also obtaining
a 99% CI

• Do a one-sample t.test on the differences in delta, testing a null mean difference of
zero (or explaining why you don’t need to specify it), either using with or a dollar sign
to get the column from the right dataframe, also obtaining a 99% CI.

Full credit for realizing that you can do both the test and CI in one shot, 2 points for otherwise
correctly doing the test first and then obtaining the confidence interval.

Suggestion for the grader: go through the (virtual) pile of exams once for each solution possi-
bility, so that there isn’t too much to keep in your head at once.

(d) [2] My output from the code of the previous part is shown in Figure 7. Interpret the confidence
interval in the context of the data.

My answer:

With 99% confidence, the mean indoor concentration of chromium is between 0.219 and 0.593
nanograms per cubic metre lower than the mean outdoor concentration.

(or, the mean outdoor concentration is that much higher than the mean indoor concentration.)

Things I want (expect to lose a half point for any that are missing):

• talk about the indoor and outdoor concentrations specifically, since that is what was
measured and was of primary interest, rather than talking about delta, which I calculated
after the fact from the measurements that were made.

• round the ends of the confidence interval off to a suitable number of decimals. The data
are given to 2 decimals, so 2 or 3 decimals is appropriate; more is not.

• in your answer, give the positive values of the numbers in the confidence interval (because
“−0.593 to −0.219 higher” is making your reader work too hard)

• give the units of measurement.

For this question, I am happy with “with 99% confidence”, since we are talking about one
confidence interval obtained from one set of data. If we had been talking about properties
of the procedure as a whole, then it would have been right to do the “in 99% of all possible
samples” thing.

(e) [1] How could you have guessed that the P-value of the test would be small, if all you could see was
the confidence interval?

My answer:

Because the confidence interval does not contain zero. (That’s all I need, which is why it was
only one point.)

We are highly confident that the indoor measurements are lower than the outdoor ones (or the
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only plausible values for the mean difference are negative ones), so we would expect the mean
difference to be significantly different from zero.

The problem with using a confidence interval to do a hypothesis test is that a confidence interval
like this one tells you that the P-value is small (in this case, less than 0.01) but it doesn’t tell
you how small. This might be important, for example if your reader wanted to use 𝛼 = 0.001,
and if all you did was give them a 99% CI, they would not be able to tell whether they should
be rejecting or not. If you give them the P-value as well, they know what decision to take: even
for your reader with their very stringent 𝛼, indoor and outdoor are different.
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3. 39 quail (small birds) were randomly allocated to one of two treatments (labelled a and b) for lowering
cholesterol. For each quail, the low-density lipoprotein (ldl) was measured after treatment. 29 quail
were allocated to treatment a and 10 to treatment b. The researchers are interested in any difference
between the two treatments. Some of the data, in dataframe quail, are shown in Figure 8.

(a) [2] A boxplot is shown in Figure 9. Why would you prefer not to use a two-sample 𝑡-test to compare
the effects of the two treatments? (I am looking for two distinct points.)

My answer:

• Both distributions have (severe) outliers and are far from normal in shape.
• The sample size for treatment b is not large enough to overcome the effect of the outliers

on the sampling distribution of the sample mean.

All you need is find one of the groups that is not normal enough given its sample size, and
the smaller sample size for treatment b is the obvious target. Neither distribution is especially
normal, but you would need to make the case for treatment a being so non-normal that even
a sample of size 39 was not large enough. (Describing the upper outlier as being “extreme”
would do that.)

(b) [2] Output from Mood’s median test is shown in Figure 10. What code produced this output?

My answer:

This:
median_test(quail, ldl, treat)

You may assume that package smmr has been loaded, so that this will work.

Inputs are dataframe, quantitative (response) variable, categorical (explanatory) variable in
that order. This is pretty straightforward, so minus one for any mistake(s), as long as you got
something substantial correct, otherwise zero.

(c) [3] Using Figure 10, what do you conclude, in the context of the data?

My answer:

The researchers are interested in any difference between the two treatments, so we use the
two-sided P-value of 0.027 as is. This is smaller than 0.05, so there is evidence of a difference
in the median ldl of the two treatments.

Give the P-value, mention the name of the thing that is different between the two treatments,
and say what aspect of it is different between them. One point for each of those. (If this were
a one-sided test, you would do the thing about checking that you are on the correct side and
then halving the P-value, but it is not, so don’t.)



STAC33 Final Exam Page 14

(d) [2] Looking at the rest of the output in Figure 10 (other than the P-value), why is it not surprising
that the significance of your test came out as it did? Explain briefly.

My answer:

The majority of the ldl values for treatment a were above the overall median, and the majority
of them for treatment b were below, which is unbalanced, so it is not surprising that we inferred
a difference between the median ldl values of the two groups.
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4. When an antibiotic is injected into the bloodstream, a certain part of the antibiotic will bind to serum
protein. This binding reduces the medical effect of the antibiotic. The binding rate was measured for 12
cows which were each given one of three types of antibiotics (these originally had long names, but you
can use the abbreviated names given in the dataset). A lower binding rate is better (because it means
that the antibiotic has an increased medical effect). The data, in dataframe bind, are shown in Figure
11.

(a) [2] A boxplot is shown in Figure 12. The researchers decided that normality was acceptable enough
(there were at least no outliers), and so in their opinion it was satisfactory to use some form of
ANOVA (in the context of this class, not Mood’s median test). Given that, do you see any other
relevant issues? Explain briefly. (If you see no issues, explain what issues you were searching for
and failed to find.)

My answer:

In ANOVA, if normality is all right (which we are saying it is), the next thing to check is equal
spreads. The observations for Eryth are, according to the boxplot, clearly less spread out than
the others (the box is much less tall), and so it is not true that all three groups have equal
spread.

You can compare Chlor and Tetra as well if you like, but this is not necessary: as soon as you
have found one group with different spread than the others, the equal spreads assumption fails.

I don’t think it’s possible to claim here that the spreads are “almost the same”, but if that’s
what you think, make sure to say that you are comparing the spreads.

Extra: the groups with bigger median do at least sort of also have bigger spread, so this is the
kind of situation in which a transformation like square root or log might be helpful:
ggplot(bind, aes(x = antibiotic, y = log(binding))) + geom_boxplot()
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This helps a bit, but not enough: now the Chlor group is more spread out than the others.

(b) [2] Two possible analyses are shown in Figures 13 and 14. Which of the two analyses is better, and
why?

My answer:

The first analysis, in Figure 13, is a regular ANOVA, and the second one, in Figure 14, is a
Welch ANOVA. We said (in the previous part) that the group spreads were not all equal, so
the Welch ANOVA is better.

Make sure you say:

• which Figure you prefer (by figure number or by analysis number in the caption, 1 or 2)
• what kind of analysis it is
• why what you said before fits that analysis.

The two points are for the second and third bullets.

The fact that the aov analysis has smaller P-values is entirely irrelevant.
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(c) [4] Using your preferred Figure of the previous part and any earlier Figures that are relevant, what
do you conclude from the whole analysis, in the context of the data?

My answer:

The conclusions from the Welch test (Figure 14) are:

• The P-value from the 𝐹 -test is very small (0.0022), so the three antibiotics are not all the
same in terms of mean binding

• Therefore we should look at the Games-Howell test to see which ones differ significantly
from which

• The antibiotics Tetra and Chlor are not significantly different, but both the comparisons
involving Eryth are significant. Give P-values for these if you want, but asserting the
significance here is fine.

• Looking back at the boxplot in Figure 12, this is because the antibiotic Eryth has signif-
icantly less binding than the other two antibiotics.

A point for each bullet.

I don’t agree with the aov analysis, as discussed before, but if you preferred it previously, you
should be consistent and draw your conclusions from Figure 13 instead. Only a few details are
different:

• The P-value from the 𝐹 -test is very small (0.00099), so the three antibiotics are not all
the same in terms of mean binding

• Therefore we should look at the Tukey test to see which ones differ significantly from
which

• The antibiotics Tetra and Chlor are not significantly different, but both the comparisons
involving Eryth are significant. Give P-values for these if you want, but asserting the
significance here is fine.

• Looking back at the boxplot in Figure 12, this is because the antibiotic Eryth has signif-
icantly less binding than the other two antibiotics.

Extra: the aov and Tukey analysis has smaller P-values, but the size of the P-values is never
a good reason for choosing one analysis over another. The smaller P-values in this case are an
illusion because an assumption for the aov analysis (equal spreads) is not met.

(d) [2] On the evidence in these data, which antibiotic or antibiotics would you recommend, and why?

My answer:

• The lowest mean binding is best (from the question), and antibiotic Eryth has the lowest
mean binding (from the boxplot)

• Its mean binding is significantly lower than the other two antibiotics (from the Games-
Howell, or Tukey if that’s what you used).

Picking the lowest one is only one point; you need to say it’s significantly lower than the others.
If it were not, then another experiment might come out with one of the others being best,
but because it’s significantly lower, we can be confident that this experiment will stand up to
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replication and that Eryth will be consistently the best.
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5. In this question, you will (except where stated otherwise) be giving code to convert one dataframe into
another. Code that takes the first dataframe and outputs the second one is acceptable. Best answers
will accomplish each task with the most direct code possible.

(a) [3] Dataframe df1 is shown in Figure 15, and dataframe df2 is shown in Figure 16. What code
would convert df1 into df2?

My answer:

This:
df1 %>% pivot_longer(everything(), names_to = "gp", values_to = "y")

gp y
a 10
b 14
c 12
a 7
b 9
c 11

A standard pivot-longer. Any other way that selects all the columns is also good. (Here and
elsewhere in this question, saving this in the second dataframe and displaying that dataframe
is also good.) Make sure you put the right names in names_to and values_to to get output
columns with the right names.

For this question, expect the grader to be primarily checking that you have the first dataframe,
a pipe, the right kind of pivoting, and either displaying directly or saving and then displaying
the output.

(b) [3] Dataframe df3 is shown in Figure 17, and dataframe df4 is shown in Figure 18. What code
would convert df3 into df4?

My answer:

This:
df3 %>% pivot_longer(everything(), names_to = c("gp", "level"),

names_sep = "_", values_to = "z")

gp level z
a lo 10
a hi 12
b lo 7
b hi 9
a lo 13
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a hi 14
b lo 6
b hi 8

A pivot-longer with two names_to columns.

If you don’t think of that, there is a less direct route:
df3 %>% pivot_longer(everything(), names_to = "var", values_to = "z")

var z
a_lo 10
a_hi 12
b_lo 7
b_hi 9
a_lo 13
a_hi 14
b_lo 6
b_hi 8

Keep in your head (or write down) what this will do, and then think about how to fix it up:
the things in the column I called var need to be separated-wider:
df3 %>% pivot_longer(everything(), names_to = "var", values_to = "z") %>%
separate_wider_delim(var, names = c("gp", "level"), delim = "_")

gp level z
a lo 10
a hi 12
b lo 7
b hi 9
a lo 13
a hi 14
b lo 6
b hi 8

which gets to the right place. You can see how this is sort of a verbose version of the pivot-longer
with two names_to columns. Two points at stake if you can do it this way.

(c) [3] Dataframe df3 is shown in Figure 17, and dataframe df5 is shown in Figure 19. What code
would convert df3 into df5?
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My answer:

This:
df3 %>% pivot_longer(everything(), names_to = c(".value", "level"),

names_sep = "_")

level a b
lo 10 7
hi 12 9
lo 13 6
hi 14 8
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We now want to get columns called a and b, with a column called level containing hi and lo,
so we need to use the variant with .value.

Pivoting longer and fixing up only sort of works this time:
df3 %>% pivot_longer(everything(), names_to = "var", values_to = "z") %>%
separate_wider_delim(var, names = c("gp", "level"), delim = "_")

gp level z
a lo 10
a hi 12
b lo 7
b hi 9
a lo 13
a hi 14
b lo 6
b hi 8
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This is progress, but we have now gone too far: we have made it too long. Jot down what this
code will produce, and diagnose: we need to pivot gp wider now:
df3 %>% pivot_longer(everything(), names_to = "var", values_to = "z") %>%
separate_wider_delim(var, names = c("gp", "level"), delim = "_") %>%
pivot_wider(names_from = gp, values_from = z)

Warning: Values from `z` are not uniquely identified; output will contain list-cols.
* Use `values_fn = list` to suppress this warning.
* Use `values_fn = {summary_fun}` to summarise duplicates.
* Use the following dplyr code to identify duplicates.
{data} %>%
dplyr::group_by(level, gp) %>%
dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
dplyr::filter(n > 1L)

level a b
lo 10, 13 7, 6
hi 12, 14 9, 8

It is generally a warning sign if you pivot longer and then wider. (There are a few circumstances
where you do need to do it, but this is not one of them.) Indeed, this doesn’t quite work,
because when you do the pivot-wider, there are two values of z to go into each cell: the rows
are determined by the distinct values of level, and there are only two of those.

Two hard-earned points if you get this far, or with some equivalent kind of thinking. This
shows, you might say, the value of .value!

(d) [3] Dataframe df6 is shown in Figure 20, and dataframe df7 is shown in Figure 21. What code
would convert df6 into df7?

My answer:

This:
df6 %>% pivot_wider(names_from = level, values_from = z)

gp lo hi
a 10 12
b 7 9

This is a standard pivot-wider, and three rather straightforward points.
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(e) [3] A dataframe df8 and some code is shown in Figure 22. What output will the code produce?
(Do not write any code for this question.)

My answer:

This:
df8 %>% pivot_wider(names_from = colour, values_from = z)

trt red green
u 9 13
v 11 17
w NA 15

The pivot-wider is going to create columns called red and green (from the contents of colour),
and will fill them with the values in z. The remaining column, trt, will determine what row
each value of z goes in. There are three distinct values in trt, namely u, v, and w, so these will
be the labels for the rows (and there will be only three rows). My advice is to draw an empty
dataframe with columns trt, red, and green, fill in the three distinct values of trt, and then,
for each value of z, put it in the column and row it belongs (the colour and trt it originally
went with). At the end, put an NA in any cells that are still empty (one in this case).

The above is the right answer, in the sense that this is what the code actually produces, with
the values in trt in alphabetical order, and columns named red and green in that order. If
you look at the help for pivot_wider, for example here, you see that the column names are by
default sorted “by first appearance”, meaning that as you read down the colour column, the
first one you see is red, so that the red column in the output will be first. However, you can
also (once you have learned about it) set names_sort = TRUE which will sort the new columns
into alphabetical order instead.

As far as I am concerned, it is correct here to get the values of z in the right places relative to
the value in trt and the column name; for example, the value 11 should be in the v row and
the red column, whichever row and column that actually is. But, if you have (especially) the
rows in a different order, you run the risk of confusing the grader, who has only a few seconds
to look at your answer and decide whether it is correct or not.

https://tidyr.tidyverse.org/reference/pivot_wider.html


STAC33 Final Exam Page 25

6. You might have heard that taller people earn more money. Is it true? The data shown in Figure 23 are
a sample of 100 American individuals. For each of these, their annual income (in $), height (inches),
weight (pounds), age (years), marital status (categorical), sex (as reported), years of education, and
percentile score on the Armed Forces Qualification Test (afqt) were recorded. The AFQT is a multiple
choice test, administered by the United States Military, used to determine qualification for enlistment
in the United States Armed Forces.

All the individuals reported their sex as either male or female, with, for these data, males being the
baseline.

(a) [2] Some regression output is shown in Figure 24. Is there a significant relationship between income
and height, and, if so, is the trend upward or downward? Explain briefly.

My answer:

There is a significant relationship, with a small P-value of 0.002 (on the height line of the
coefficient table).

The slope, 2484, is positive, so a taller person is predicted to have a higher income: the trend
is upward.

One point each.

(b) [2] I fitted a second regression by starting with all the explanatory variables and proceeding by
backward elimination, reaching the regression shown in Figure 25. How can it be that height no
longer features in this regression? The best answer will indicate not only what happened, but also
why it might have happened, based on what you know or can guess about height.

My answer:

This must be because, with sex, education and afqt in the regression, knowing a person’s
height adds nothing to the prediction. One point.

In particular, males tend to be taller than females, so height and sex will be associated, and
the story we get from here is that males earn more than females (holding education and AFQT
score constant), so that the reason taller people earn more is that males earn more and males
are generally taller than females.

The second point for saying a decent fraction of this.

This analysis shows that sex is a stronger predictor than height (because height got eliminated
from the regression).

(c) [3] Interpret the Estimates in Figure 25, in the context of the data. Do not interpret the intercept.

My answer:

One point each:
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• sex is categorical, so females earn less on average than (the baseline) males by about
$23,000, all else equal. (There is unfortunately still sex discrimination in the US.)

• One year more of education is associated with a income increase of about $4400, all else
equal.

• One percentage point (percentile point?) higher on the AFQT is associated with an
income increase of about $330, all else equal.

Words like “all else equal” or “holding other variables constant” should appear in your answer
somewhere. Minus a half point if they don’t.
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(d) [2] Do the signs of the Estimates for education and afqt (positive or negative) in Figure 25 make
practical sense, based on what you know or can guess? Explain briefly.

My answer:

Both Estimates have a positive sign, so:

• having more education should mean having more knowledge, and therefore make an indi-
vidual more employable (or employable at a better job)

• scoring higher on the AFQT should mean being better suited to life in the military. This
might mean that a person is more disciplined or hard-working or better at taking orders
(or something along those lines), which would also mean they are better suited to working
in the corporate world. Or, a person who scores lower will be less of those things, and
though they might be more creative or imaginative, they might have a harder time making
a high income. For the second one, use your imagination, ha ha ha.

Something sensible along those lines, or anything else that makes sense to the grader, should
get the points here.

(e) [1] Can the regression model in Figure 25 be improved further? Explain (very) briefly.

My answer:

No: all three of the explanatory variables are significant, with P-values less than 0.01.

The intercept cannot be removed, so don’t suggest that.

(f) [2] What do you conclude from the plot in Figure 26?

My answer:

This is a plot of residuals against fitted values for the model heights.1 that we examined
earlier. I think you have two choices for the interpretation here, one of these:

• the points form a random pattern and therefore there is no indication of a problem with
the regression

• the scatter of points gets slightly wider as we move to the right, so there is a small
indication of fanning-out (which might be solved by a transformation of income).

If you want to say that this is fanning out, say something about how you know.

(g) [2] What code would produce the plot in Figure 27, bearing in mind that it came from the regression
model shown in Figure 25? (Hint: why would you draw a plot of this type in this context?)

My answer:

This is a normal quantile plot, and the standard reason for drawing one in this context is to
check the normality of the residuals. Hence:
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ggplot(heights.1, aes(sample = .resid)) + stat_qq() + stat_qq_line()

(h) [2] A third plot is shown in Figure 28. What do you learn from this plot? Explain briefly.

My answer:

This is a plot of the Box-Cox transformation. The peak is near 0.5 (0.5 is in the confidence
interval), saying that the regression could be improved by using the square root of income
instead of income itself.

There are some clues that this sort of thing might be useful:

• the slight fanning-out on the residual plot
• the slight right-skewness on the normal quantile plot of the residuals
• outside of the analysis here, noting that incomes often have a right-skewed distribution

(they can be very big) and often benefit from some kind of transformation.
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7. What integers less than 100 are prime (that is, are (evenly) divisible only by 1 and themselves)? We
will be using R to determine this, and to do so we will need to write a function to determine whether a
particular integer n is prime.

(a) [4] Write an R function called is_prime that accepts as input a number n and returns TRUE if the
number is prime and FALSE if it is not prime. To do that, make a dataframe with all the integers r
from 2 up to and including the square root of n, work out the remainder when n is divided by each
value r, and use the results of the remainder column to decide whether n is prime or not. Hints:
(i) R has functions any and all that accept a vector or column. any returns TRUE if any of its
inputs are TRUE, and all returns TRUE if all of its inputs are TRUE, (ii) in :, real numbers are
rounded down, so that for example 2:sqrt(15) returns 2 3.

My answer:

My function is this:
is_prime <- function(n) {
tibble(r = 2:sqrt(n)) %>%
mutate(rem = n %% r) %>%
mutate(divides = (rem == 0)) -> d

!any(d$divides)
}

My steps:

• use the second hint to make a dataframe containing the values of r I will want to divide
by

• work out the remainder when the input n is divided by each r. We used the %% operator
in the Collatz conjecture example, to work out whether an integer was odd or even.

• create a column divides that is TRUE if the remainder is zero (FALSE otherwise)
• if any of the values in divides are TRUE, return FALSE (n is not prime), but if they are

all false, return TRUE. (This is a bit complicated; you might instead define something
like “does not divide”, and then return TRUE if all of those are true.)

Remember also to make sure that your function returns a single TRUE or FALSE, not a
dataframe containing a single true or false. all and any work on a single column, so it seemed
best to me to save the dataframe, and then run any on the column I wanted from that saved
dataframe. If you have a different way and it will work, you are good. (You may be able to
use pull or something similar.) You may be able to shortcut defining an extra column as I did
when defining divides, for example by using any(rem == 0) or all(rem != 0).

Points: 2 for getting as far as working out a column of remainders, the other 2 for doing
something useful with them and returning something that will be TRUE if the input is prime
and FALSE otherwise.
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(b) [1] How would you use your function to determine whether 21 is prime?

My answer:

Call your function with 21 as input:
is_prime(21)

[1] FALSE

Of course, 21 is not prime because it is divisible by 3. (You don’t need to get the output,
because you won’t see than on an exam.)

This you should be able to get even if you have no idea how to do the previous part, so it is
almost a free point.

(c) [4] Use your function is_prime to obtain a vector of all the prime numbers less than or equal to
100, using a map. is_prime returns a TRUE or FALSE value, which in map terms is called a lgl
(“logical”).

My answer:

The first way I thought of is via making a dataframe:
tibble(x = 1:100) %>%
mutate(prime = map_lgl(x, \(x) is_prime(x))) %>%
filter(prime) %>%
pull(x)

[1] 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

The steps here are:

• create a dataframe with all the numbers you want to test for primeness
• create a column that says whether or not each one is prime (this is where map gets used;

the appropriate one is map_lgl because is_prime returns a lgl)
• grab only the ones that actually are prime
• pull out just the values of x (we know that prime is TRUE for these).

You can also do it without a dataframe, but there is a step involved that you may not know
how to do:
x <- 1:100
x %>%
map_lgl(\(x) is_prime(x)) %>%
x[.]

[1] 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

The steps here are:
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• set up a vector of numbers you want to test for primeness (this needs to have a name
because we refer back to it later)

• “for each thing in x, work out whether it is prime or not” (this produces a vector of TRUE
and FALSE as long as x was)

• return the values of x that correspond to the TRUE things.

I haven’t shown you how to do the last step in this course, but if you remember it from
somewhere else, I have no problem if you use it here. The . means “what came out of the
previous step” (which I think you have seen in this course), and putting it inside x as subscripts
means to return the values of x that have a TRUE subscript (this part you may have seen
somewhere else, if not in this course).

Two points for running map_lgl appropriately to get an indication of whether each number
from 1 through 100 is prime, and the other two points for turning that into a list of the actual
prime numbers. (If you go the dataframe way, one out of the last two for doing something like
a filter to obtain only the rows corresponding to the prime numbers.)
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8. A process produces observations that are either successes or failures, independently with probability 𝑝
of being a success. The total number of successes 𝑥 in a total of 𝑛 observations is recorded. Our aim is
to estimate 𝑝 using Bayesian methods with Stan.

In Stan, the binomial distribution is called binomial, with two inputs that are the number of trials and
the success probability in that order. Also, the uniform distribution is called uniform, with two inputs
that are the lower and upper limits of the uniform distribution.

(a) [4] Write a complete Stan program to obtain the posterior distribution of 𝑝, given inputs of 𝑛 and 𝑥.
Before collecting the data, you think that 𝑝 could take any of its possible values, so give it a suitable
uniform distribution. Make sure to supply lower and/or upper limits on variables that should have
them.

My answer:

The description of the data-generation process means that 𝑥 has a binomial distribution with
parameters 𝑛 and 𝑝, which you use for the likelihood. The business about “before collecting
the data” means that you use a uniform distribution for the prior; since 𝑝 is a probability, the
limits of the uniform distribution should be 0 and 1.

Furthermore, the only parameter is 𝑝, which is a real number between 0 and 1. 𝑛 and 𝑥 are
both data and are integers. So my Stan program looks like this:

data {
int<lower = 0> n;
int<lower = 0, upper = n> x;

}

parameters {
real<lower = 0, upper = 1> p;

}

model {
// prior
p ~ uniform(0, 1);
// likelihood
x ~ binomial(n, p);

}

𝑝 needs to have lower and upper limits (in the parameters section), but I don’t need to see
the lower and upper limits in the data section. (In practice, all limits on variables in the data
section do is to get Stan to check your input data and see that it satisfies the limits, giving an
error if for example 𝑥 is bigger than 𝑛. The important limits are the ones on 𝑝, because you
don’t want the sampler to stray into negative values, or values bigger than 1, for 𝑝.)

The grader will award you a mark according to how much of this you have correct (in their
estimation). I think it is wrong to set x up as an array, unless you are very careful about what
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your data look like (see comments below the next part). The data we have are a single total
number of successes and a single total number of trials, so your code should reflect that.

If you wish to avoid hard-coding the 0 and 1 in the uniform distribution, call these values (say)
a and b, set the prior for p to be uniform(a, b), and input the values 0 and 1 for a and b in
your data list (next part).

I ought to have told you what name to give this, but if you seem to have given it a sensible one
(in (c)), I am happy with that.

(b) [2] You observed 30 successes in 50 trials. How would you set up this data as an object my_data to
input into Stan?

My answer:

As a list:
my_data <- list(x = 30, n = 50)
my_data

$x
[1] 30

$n
[1] 50

The n and the x can be either way around, but they both need to be there. You don’t need to
display the result.

I made this one easy for you, because there are no arrays anywhere in sight. If you think there
should be, you need to say something about what’s in them: for example, if your x is an array,
you need it to be filled with 30 1 values (for successes) and 20 0 values (for failures), consistently
with your code in (a). If your (a) and (b) are consistent in this regard, you are good (I checked;
I think about one student made it work this way). In your previous work with the binomial
distribution, if you counted the number of successes, your data would be two scalars (the total
number of successes and the number of trials), but if you listed the result of each trial as a
success or failure, your data would be a scalar (n) and a vector (array) of length n whose 𝑖-th
element is the result of that trial. The two ways are actually equivalent, because the total
number of successes is the sufficient statistic for estimating p, and you don’t need the results
of the individual trials. (The concept of “sufficient statistic” is actually not a frequentist thing
but a likelihood thing: two datasets with the same sufficient statistic have the same likelihood,
and so if you don’t change the prior they produce the same posterior distribution as well.)

Your (a) needs to include the data section. If you put it here, you’ll get credit for (a) for it (if
it is correct), but you won’t get any credit for (b).

The things contained in your list here should be there if and only if they are contained in
your data section in (a), and they must be of the same type (eg. array, if your data section
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contained an array). For example, if you used a more general uniform(a, b) prior distribution
in (a), a and b need to be part of your list here.

(c) [2] What R code would compile your Stan program and sample from the posterior distribution
(using the default values)? Call your compiled Stan program binom.

My answer:

Compilation is this, for one point:
binom <- cmdstan_model("binom.stan")

and the sampling is this, for the second point (saving the output is optional for this question,
though in practice you would save it):
ans <- binom$sample(data = my_data)

For the data, I asked you to call it my_data, so use that name here as well. If you had a
compilation line with a sensible looking name for your Stan file, and a sampling line with a
data = and the name of the data you made in the previous part, then you were good for two
points, though having said that, a lot of people forgot to do one of the two things.

Note that you can get two points here even if you got neither of (a) and (b). I am not checking
your Stan code or your data for correctness here, since I already did that; if you have the right
structure, you have two points regardless of what happened before.

This one was fast to mark, since most people got 1 or 2 from doing one or two of the things. If
you made a mistake in either of the bits of code, you might have lost another half point. (In
contrast to marking (a), I have to say, where there were a thousand and one ways to attempt
it, and I had to find some points for each of them no matter how off-base.)

(d) [2] The output from your Stan model is shown in Figure 29. How would you interpret the numbers
in the q5 and q95 columns of the p row?

My answer:

From a Bayesian point of view, p is a random variable, so we can make probability statements
about it. q5 and q95 are the 5th and 95th percentiles of the posterior distribution, so the best
answer is: there is a 0.90 probability that 𝑝 lies between 0.48 and 0.70.

Note that you don’t need to hedge this about with “in 90% of all possible samples” as you do
with a confidence interval, and indeed the word “confidence” should not appear in your answer
at all. This may involve mentally un-learning some of the things you learned earlier! (The
randomness here is in a different place than in “frequentist” or repeated-sampling statistics.)

One point for something like “the posterior interval for 𝑝 is from 0.48 to 0.70. This is true, but
not very insightful.
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Extra: the posterior mean is close to 0.60, which is the maximum likelihood estimate (30/50 =
0.60). What has happened here is that we had a vague prior distribution (“𝑝 could be anything
between 0 and 1 with equal probability”) and we had a decent amount of data (50 trials), so
that the inference is dominated by the data rather than the prior. When you have a lot of data,
it doesn’t really matter what the prior distribution is. The posterior distribution is really a
weighted average of the prior and the likelihood (in some loose sense), so that when you have
a vague prior and lots of data, the posterior is a lot like the likelihood. On the other hand, if
you were fairly sure that 𝑝 was near, say, 0.5, before you looked at any data, and if you didn’t
have much data, the posterior mean would also be close to 0.5 pretty much whatever the data
say. Thus, it is important to have a prior that really does reflect your prior beliefs (ignorance
about 𝑝 in this case).

Bayesian statistics has a whole field called “prior elicitation”, in which the statistician has ways
to get at what the user really thinks the parameters might be, prior to looking at any data. In
this case, the user might say “I’m pretty sure that 𝑝 is between 0.3 and 0.7” (based on their
knowledge of the process producing the data, whatever it is), and the statistician might take
that as the middle 95% of the user’s prior distribution, and take a prior distribution that is
normal with that middle 95% (mean 0.5 and SD 0.1, roughly). In that case, the posterior mean
would be somewhere between 0.5 (prior mean) and 0.6 (maximum likelihood estimate), closer
to the latter because there is a fair amount of data.
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Use this page if you need more space. Be sure to label any answers here with the question and part they
belong to.
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Numbered Figures begin here, in with caption and label:

library(tidyverse)
library(smmr)
library(PMCMRplus)
library(MASS)
library(cmdstanr)

Figure 1: Packages

Group Leniency
neutral 6
smile 3.5
smile 4.5
smile 6
smile 4
neutral 2.5
smile 7.5
smile 2.5
smile 3.5
neutral 4
neutral 2.5
neutral 4.5
smile 3.5
smile 9
neutral 3
smile 3
smile 5
neutral 4.5
smile 5.5
smile 5

Figure 2: Smiles leniency data
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House Indoor Outdoor delta
14 0.18 0.66 -0.48
26 0.28 0.48 -0.20
21 0.23 0.12 0.11
4 0.12 0.54 -0.42

15 0.18 0.29 -0.11
33 0.62 0.36 0.26
22 0.23 0.54 -0.31
11 0.17 0.32 -0.15
13 0.18 1.55 -1.37
3 0.09 0.47 -0.38

17 0.19 1.02 -0.83
19 0.22 0.90 -0.68
27 0.29 0.27 0.02
28 0.34 0.37 -0.03
9 0.15 0.86 -0.71

Figure 3: Chromium data (randomly chosen rows out of 33 total)

ggplot(chromium, aes(sample = Indoor)) + stat_qq() + stat_qq_line()
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−2 −1 0 1 2
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y

Figure 4: Chromium data normal quantile plot 1
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ggplot(chromium, aes(sample = Outdoor)) + stat_qq() + stat_qq_line()
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Figure 5: Chromium data normal quantile plot 2
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ggplot(chromium, aes(sample = delta)) + stat_qq() + stat_qq_line()
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y

Figure 6: Chromium data normal quantile plot 3

Paired t-test

data: Indoor and Outdoor
t = -5.9509, df = 32, p-value = 1.251e-06
alternative hypothesis: true mean difference is not equal to 0
99 percent confidence interval:
-0.5929216 -0.2191996
sample estimates:
mean difference

-0.4060606

Figure 7: Chromium data 𝑡 output
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treat ldl
a 66
b 30
b 36
a 50
a 52
a 73
a 58
b 33
b 98
a 54

Figure 8: Quail data (some)

ggplot(quail, aes(x = treat, y = ldl)) + geom_boxplot()

50

100

150

a b
treat

ld
l

Figure 9: Quail data boxplot
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$grand_median
[1] 62

$table
above

group above below
a 17 11
b 2 8

$test
what value

1 statistic 4.88571429
2 df 1.00000000
3 P-value 0.02707983

Figure 10: Mood’s median test for quail data

antibiotic binding
Tetra 27.3
Tetra 32.6
Tetra 30.8
Tetra 34.8
Eryth 21.6
Eryth 17.4
Eryth 18.3
Eryth 19.0
Chlor 29.2
Chlor 32.8
Chlor 25.0
Chlor 24.2

Figure 11: Binding data (all)
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ggplot(binding, aes(x = antibiotic, y = binding)) + geom_boxplot()

20

25

30

35

Chlor Eryth Tetra
antibiotic

bi
nd

in
g

Figure 12: Binding data boxplot

bind.1 <- aov(binding ~ antibiotic, data = bind)
summary(bind.1)

Df Sum Sq Mean Sq F value Pr(>F)
antibiotic 2 320.3 160.13 16.43 0.000991 ***
Residuals 9 87.7 9.75
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(bind.1)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = binding ~ antibiotic, data = bind)

$antibiotic
diff lwr upr p adj

Eryth-Chlor -8.725 -14.888352 -2.561648 0.0084353
Tetra-Chlor 3.575 -2.588352 9.738352 0.2869496
Tetra-Eryth 12.300 6.136648 18.463352 0.0009040

Figure 13: Binding data analysis 1
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oneway.test(binding ~ antibiotic, data = bind)

One-way analysis of means (not assuming equal variances)

data: binding and antibiotic
F = 23.366, num df = 2.0000, denom df = 5.3673, p-value = 0.002244
gamesHowellTest(binding ~ factor(antibiotic), data = bind)

Pairwise comparisons using Games-Howell test
data: binding by factor(antibiotic)

Chlor Eryth
Eryth 0.033 -
Tetra 0.400 0.003

P value adjustment method: none
alternative hypothesis: two.sided

Figure 14: Binding data analysis 2

df1

a b c
10 14 12
7 9 11

Figure 15: Dataframe df1

df2

gp y
a 10
b 14
c 12
a 7
b 9
c 11

Figure 16: Dataframe df2
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df3

a_lo a_hi b_lo b_hi
10 12 7 9
13 14 6 8

Figure 17: Dataframe df3

df4

gp level z
a lo 10
a hi 12
b lo 7
b hi 9
a lo 13
a hi 14
b lo 6
b hi 8

Figure 18: Dataframe df4

df5

level a b
lo 10 7
hi 12 9
lo 13 6
hi 14 8

Figure 19: Dataframe df5

df6

gp level z
a lo 10
a hi 12
b lo 7
b hi 9

Figure 20: Dataframe df6 (note that this is just the first four rows of df4)
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df7

gp lo hi
a 10 12
b 7 9

Figure 21: Dataframe df7

df8

trt colour z
u red 9
v red 11
u green 13
w green 15
v green 17

df8 %>% pivot_wider(names_from = colour, values_from = z)

Figure 22: Dataframe df8 and some code

income height weight age marital sex education afqt
53000 68 205 53 married male 15 90.791
5310 62 132 49 married female 12 78.055
7000 66 180 50 married female 14 81.344

10000 66 180 53 separated female 12 67.886
6000 64 165 48 married female 11 8.653

12000 68 150 50 married female 12 61.117
25000 66 150 53 divorced male 11 34.599
83000 62 144 49 divorced female 12 21.965

160000 71 162 49 divorced male 16 89.282
40000 73 225 52 married male 12 4.242
30000 63 160 48 single female 12 7.495
70000 67 179 51 married male 12 54.298
62000 62 135 48 married female 20 40.182
67500 65 190 51 married female 16 50.223
43000 70 186 49 married male 12 31.213

Figure 23: Heights and income data (15 randomly chosen rows)
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heights.0 <- lm(income ~ height, data = heights)
summary(heights.0)

Call:
lm(formula = income ~ height, data = heights)

Residuals:
Min 1Q Median 3Q Max

-53876 -24497 -5172 19108 100640

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -117005 53246 -2.197 0.03034 *
height 2484 788 3.152 0.00215 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 32070 on 98 degrees of freedom
Multiple R-squared: 0.09207, Adjusted R-squared: 0.0828
F-statistic: 9.937 on 1 and 98 DF, p-value: 0.002149

Figure 24: Income and height regression

Call:
lm(formula = income ~ sex + education + afqt, data = heights)

Residuals:
Min 1Q Median 3Q Max

-60647 -19223 -4109 14528 71140

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -11376.2 15687.3 -0.725 0.470103
sexfemale -22783.4 5856.2 -3.890 0.000184 ***
education 4437.2 1298.9 3.416 0.000933 ***
afqt 327.5 119.3 2.745 0.007220 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 28110 on 96 degrees of freedom
Multiple R-squared: 0.3167, Adjusted R-squared: 0.2953
F-statistic: 14.83 on 3 and 96 DF, p-value: 5.22e-08

Figure 25: Regression of income on explanatory variables. The model is called heights.1.



STAC33 Final Exam Figures

ggplot(heights.1, aes(x = .fitted, y = .resid)) + geom_point()
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Figure 26: Regression plot 1 of income on explanatory variables
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Figure 27: Regression plot 2 of income on explanatory variables
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boxcox(income ~ sex + education + afqt, data = heights)
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Figure 28: Regression plot 3 of income on explanatory variables

variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
lp__ -35.59 -35.32 0.73 0.33 -37.03 -35.08 1.00 2092 2612
p 0.59 0.60 0.07 0.07 0.48 0.70 1.00 1387 2440

Figure 29: Stan model results


