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1. When babies are born with low birth weight, defined as birth weight less than 2500 grams, physicians are
concerned, because infant mortality rates and birth defect rates are higher for low birth weight babies.
A woman’s behaviour during pregnancy (including diet, smoking habits, and receiving prenatal care)
can greatly alter the chances of carrying the baby to term, and, consequently, of delivering a baby of
normal birth weight. We will focus on predicting whether or not a baby has low birth weight, in column
low, from the mother’s weight at her last menstrual period (lwt) and whether or not the mother smoked
during pregnancy (smoke). The two categorical variables have levels yes and no; the weight is measured
in pounds. Some of the data, in dataframe birthwt, is shown in Figure 2.

(a) [2] Why is it sensible to analyze these data using logistic regression?

My answer:

The response variable low is categorical, and to predict a categorical response we need to run
a logistic regression.

Strictly, it matters that low has only two categories (so that the use of glm later is correct),
but my major concern here is that you know when to run a logistic regression of any kind.

(b) [2] Figure 3 shows the results of running a logistic regression. How do you know that it is predicting
the probability that a baby is of low birth weight (rather than the probability that a baby is not)?

My answer:

The categorical response low has two levels, yes and no. The first alphabetically, no, is the
baseline, and the model predicts the probability of the second level alphabetically, yes.

(c) [2] In Figure 3, is there any reason to remove any explanatory variables? Explain briefly.

My answer:

No, because they are both significant at 𝛼 = 0.05, with P-values 0.029 and 0.037 respectively.

An easy two points.

(d) [2] According to Figure 3, precisely what is predicted to happen when a woman’s weight at last
menstrual period increases by 1 pound, all else equal?

My answer:

The estimate for lwt is −0.0133, so the log-odds that the woman’s baby is of low birth weight
decreases by 0.0133. (In this model, it is actually better for the mother to be heavier.)

One point for mentioning log-odds, one for saying what happens to it. If you think that
something else is decreasing by that much, your maximum is 1 out of 2.
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(e) [2] Some predictions are shown in Figure 4. Describe the effects of mother’s weight at last menstrual
period and of smoking on the probability of the baby being of low birth weight.

My answer:

The first set of predictions (from the second code chunk in the Figure) show the effect of
mother’s weight when smoking is held fixed. As the mother’s weight increases, the probability
of a low birthweight baby decreases.

The second set of predictions (from the code chunk at the bottom of the Figure) show that if
the mother smokes, the probability of a low birth weight baby is (substantially) higher, holding
weight constant.

(This is why mothers-to-be are advised to quit smoking before getting pregnant.)

(f) [2] Explain briefly how the predictions in Figure 4 are consistent with the output in Figure 3.

My answer:

• The predictions say that a larger mother’s weight goes with a smaller probability of low
birth weight, which is consistent with the negative Estimate for lwt (a larger weight goes
with a smaller log-odds and hence a smaller probability)

• According to the predictions, a mother that smokes is more likely to have a low birth
weight baby. This is consistent with the positive Estimate for smokeyes, which says that
the probability of low birth weight is higher for a woman that smokes compared with a
woman who does not (baseline).

Extra: I keep reading smokeyes as “smokey eyes”, but it’s actually smoke with yes on the end.

This was meant to be a straightforward warmup question.

2. An air traffic controller must be able to respond quickly to an emergency condition indicated on her
display panel. Three (numbered) types of display panel were compared. Each panel was tested under
four (numbered) simulated emergency situations. Two well-trained controllers were assigned to each of
the 12 combinations of emergency condition and display panel type, for a total of 24 controllers in all,
and the time taken to respond to the emergency situation was recorded. A lower time is better.

The data, in dataframe display, are shown in Figure 5. The numbered display panel types, in panel,
and emergency situations, in emergenc, are already factor variables, and so will be treated as categorical
in the analyses that follow.

(a) [2] Two analyses are shown in Figure 6. What do you conclude from the first analysis in display.1?

My answer:

Test the interaction between display panel and emergency type. With a P-value of 0.567, this
is nowhere near significant, and thus the effect of display panel is the same for each emergency
type (and vice versa).
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We should remove the non-significant interaction and fit a model without it (which is the next
part, but if you say that here, it’s also good).

It is an error to discuss the main effects at this point, because we need to re-fit the model
without the interaction to assess their significance.

(b) [3] Why is it necessary to do the analysis in display.2 in Figure 6? What do you conclude from
it?

My answer:

The interaction in display.1 was not significant, so we need to remove it and re-fit the model
without it. (One point.)

The two remaining main effects are both strongly significant, with P-values of 1.8 × 10−5 for
panel and 8.3×10−10 for emergenc. There are therefore some differences in time among display
panels and among emergency situations. This is as far as we can go for now.

Extra: note that by taking the interaction out, the P-values for the two main effects have
decreased, so that they are even more significant than they were before. This is not so much
because the 𝐹 -statistics have changed greatly, but more because we have gained six df for error,
which is making similar 𝐹 -statistics a lot more significant.
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(c) [2] What do you conclude from the analysis in Figure 7, in the context of the data? (If you think
that it was not appropriate to run this analysis, explain briefly why.)

My answer:

It is appropriate to run the Tukey because we have two significant main effects that we want
to understand better:

• all the emergency situations took a different mean time to respond to (all six P-values
are less than 0.05, if only just in one case)

• display 3 is significantly different (worse) than the other two displays, which do not differ
significantly in mean time.

(d) [2] The main interest in this study was the display panels. On the basis of the information given
here, which panel or panels would you recommend? Explain briefly.

My answer:

Display panel 3 was associated with the largest mean time (from the Tukey), since the time
was longest on average (longer than either of the other two panels). There was no significant
difference between panels 1 and 2, so we can recommend either of these panels.

Make sure your answer (i) eliminates panel 3 and (ii) says that we would recommend either of
the other two because there is no significant difference between them.

(e) [3] Why would it be a mistake to run a simple effects analysis here? What do you expect would
happen if you did run a simple effects analysis of display panels for each emergency type? Explain
briefly.

My answer:

It would be a mistake to run a simple effects analysis here because the interaction between
display panel and emergency situation is not significant. We only run a simple effects analysis
when the interaction is significant. One point.

If we had run the analysis described, we would expect the effect of display panel to be the same
for each emergency situation, because there is, according to the analysis, an effect of display
panel that applies for all emergency situations. That is, display panel 3 would come out worst
every time, and panels 1 and 2 would be not significantly different every time.

Extra: that actually isn’t quite how it comes out:

Emergency situation 1:

display %>% filter(emergenc == 1) %>%
aov(time ~ panel, data = .) -> mod

summary(mod)
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Df Sum Sq Mean Sq F value Pr(>F)
panel 2 89.33 44.67 9.926 0.0476 *
Residuals 3 13.50 4.50
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

TukeyHSD(mod)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = time ~ panel, data = .)

$panel
diff lwr upr p adj

2-1 -2 -10.8644949 6.864495 0.6549468
3-1 7 -1.8644949 15.864495 0.0901656
3-2 9 0.1355051 17.864495 0.0480695

Panels 1 and 3 are not quite significantly different.

Emergency situation 2:

display %>% filter(emergenc == 2) %>%
aov(time ~ panel, data = .) -> mod

summary(mod)

Df Sum Sq Mean Sq F value Pr(>F)
panel 2 64.0 32.00 17.45 0.0223 *
Residuals 3 5.5 1.83
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

TukeyHSD(mod)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = time ~ panel, data = .)

$panel
diff lwr upr p adj

2-1 -4 -9.658072 1.658072 0.1167813
3-1 4 -1.658072 9.658072 0.1167813
3-2 8 2.341928 13.658072 0.0196715
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3 vs 1 is some way from being significant.

Emergency situation 3:

display %>% filter(emergenc == 3) %>%
aov(time ~ panel, data = .) -> mod

summary(mod)

Df Sum Sq Mean Sq F value Pr(>F)
panel 2 52.0 26.00 1.88 0.296
Residuals 3 41.5 13.83

TukeyHSD(mod)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = time ~ panel, data = .)

$panel
diff lwr upr p adj

2-1 2 -13.542152 17.54215 0.8595269
3-1 7 -8.542152 22.54215 0.2875938
3-2 5 -10.542152 20.54215 0.4668071

No significant differences anywhere.

Emergency situation 4:

display %>% filter(emergenc == 4) %>%
aov(time ~ panel, data = .) -> mod

summary(mod)

Df Sum Sq Mean Sq F value Pr(>F)
panel 2 56.33 28.17 9.389 0.0511 .
Residuals 3 9.00 3.00
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

TukeyHSD(mod)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = time ~ panel, data = .)
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$panel
diff lwr upr p adj

2-1 -4.0 -11.2378298 3.23783 0.1975218
3-1 3.5 -3.7378298 10.73783 0.2541129
3-2 7.5 0.2621702 14.73783 0.0455779

Depending on how you read this: no significant differences, or 3 vs 2 is just significant.

What I think has happened here is that we started off with 24 observations, which gave us a
decent amount of power to find differences. But when we did the simple effects, there were 4
of them, so each one was based on only 6 observations, 2 per display panel. This does not give
us a lot of evidence to demonstrate that display panels are different, which is why we saw less
significance in the simple effects than we did in display.2.

This is just in case you were curious.

The answer I wanted was the one I gave above, showing an understanding that the effect of
panel applies across all emergency situations, so that the panels in the simple effects would be
expected to show the same significance as in display.2, and with more data, they would. We
could predict the results of the simple effects here (not altogether accurately, as it turned out)
because the interaction was not significant; if the interaction had been significant, the results
of the simple effects analyses would have been different from each other, because there was no
longer “an” effect of panel. In that case, certain panels would have been better for only some
of the emergency situations, and other panels better for others, in the same way that on the
midterm question, it was better to have wrinkled fingers if the object was wet, but if the object
was dry, it didn’t make any difference.

3. The observations in dataframe vocab are respondents to U.S. General Social Surveys, 1972-2016. I
selected a random sample of 100 respondents (in total) from the three years 1974, 1994, 2014 from a
much larger number of respondents in several different years. The three variables of interest to us are

• year: the year of the survey (1974, 1994, or 2014)
• education: the number of years of education (recorded as a whole number)
• vocabulary: the number of items correct on a 10-word test (also recorded as a whole number).

Some of the data are shown in Figure 8.

(a) [2] A scatterplot is shown in Figure 9. Why did I use geom_jitter rather than geom_point?

My answer:

Both the years of education and vocabulary test scores are recorded as whole numbers, so there
is a limited number of places on the graph to plot points. For example, a lot of respondents
had 12 years of education (ie. graduated high school), and a lot of those will have the same
vocabulary score. Hence, a number of points on the scatterplot will need to be plotted in one
place. (One point for getting to that, or something like it.)

To spread the points out so that we can see them all, we use geom_jitter to move each point
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slightly away from where it would be plotted by geom_point, and then all 100 points will be
visible. (The other point, showing that you know the difference between geom_jitter and
geom_point).
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(b) [2] Based on what you know or can guess about education and vocabulary, does the general trend
of the lines on the plot of Figure 9 make sense? Explain briefly.

My answer:

All three lines show an upward trend: the more education, the greater the vocabulary score.
This makes sense because someone who has more education has probably done more reading
and is therefore likely to know more words. (I’m willing to be flexible here, as long as you can
come up with some kind of plausible link between education and how many words a person
knows, or their chances of happening to know the words that are on the vocabulary test.)

(c) [2] An analysis of covariance is shown in Figure 10. Why is it correct to use the drop1 table to
assess the significance of the interaction, and incorrect to use the summary output to do this?

My answer:

Because year is being treated as categorical (the factor(year)), we need to use drop1 to test
anything with year in it. This is obligatory here because there are three different years; we
want to know whether we can remove the interaction as a whole, and the two tests on the last
two lines of the Coefficients only compare each year (precisely, the slopes of the lines for each
year) with the baseline year 1974.

(d) [3] Is there a significant interaction between education and year? What does the significance (or
non-significance) of that interaction term tell you about what you see on the scatterplot in Figure
9? Explain briefly.

My answer:

In the drop1 at the bottom of Figure 10, the P-value is 0.319, which is not even close to being
significant. Hence there is no significant interaction. (One point.)

This tells us that the slopes of the lines in Figure 9, even though they look a bit different, are
actually not significantly different from each other. (The other two points).

My suspicion is that this is because there is a lot of scatter about the lines (there are a lot of
points not very close to their lines), and so the slopes are not estimated very accurately (as you
see from the wide envelopes around them, which I left in as a clue).

(e) [3] A second analysis of covariance is shown in Figure 11. Interpret the effects of education and
year shown in the Estimate column of the summary table.

My answer:

From the summary output, the slope for education is 0.294. This is an ordinary regression
slope, so an additional year of education is associated with an increase of 0.294 points on the
vocabulary test. This holds for any year. One point.
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The two year Estimates say that vocabulary scores in 1994 were predicted to be about 0.14 less
than in 1974, and in 2014 were predicted to be about 0.15 less than in 1974, holding education
constant. The other two points. These two effects are not significant (as well as being very
small), but I wanted you to show me that you knew what they meant.
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4. Grazing cattle can ingest larvae, which deprives the host animal of nutrients and weakens the immune
system, affecting the growth of the animal. Each of 60 animals were randomly allocated to one of two
treatments A and B, with 30 animals receiving each treatment. Each animal was weighed 11 times at
(mostly) two-week intervals, and the weight was recorded. Some of the data, in dataframe cattle, are
shown in Figure 12. The animals are identified by the letter of their treatment followed by the number
of that animal within its treatment group.

(a) [2] What feature of these data makes a repeated measures analysis appropriate? Explain briefly.

My answer:

Each animal gives us more than one measurement: specifically, 11 measurements, because that
same animal was measured 11 times.

(b) [2] How do you know that the dataframe shown in Figure 12 is laid out appropriately for drawing
a graph such as a spaghetti plot or an interaction plot?

My answer:

The data are laid out in “longer” format, with all the weights in one column, labelled in column
day with the time at which they were taken, and multiple rows for each animal. (The contrast
is with the standard MANOVA layout, where each animal is in one row and there is one column
for the weight on each day.)

Say something about why longer format makes it easier to draw a graph, and what precisely
we have here that will make it work.

(c) [2] Figure 13 shows an interaction plot. Assuming that the amount of variation about these means
is small, what would you expect a repeated measures analysis to demonstrate? Explain briefly.

My answer:

The traces over time are not quite parallel, so we would expect to see an interaction between
weight and time (day). That’s all. Remember that if there is an interaction, you stop there.

I added the piece about “small amount of variation” because otherwise you could say that the
two traces are more or less parallel and that you would expect to see no interaction (and, in
that case, a main effect of time but probably not any effect of treatment). If you say that there
is likely no interaction and no treatment effect, but a time effect, you haven’t used the “small
amount of variation” part, but your interpretation is otherwise reasonable, so that is 1.5. Note:
If you say there is no interaction, you are entitled to say something about likely treatment and
time effects: (i) there is a time effect (upward trend) for both treatments, and (ii) the two
treatments are similar for all times.
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(d) [1] A mixed model analysis is shown in Figure 14. Why did I use factor(day) rather than just
day?

My answer:

Day was recorded as a number (the number of days since the start of the study), but I wanted
to treat it as categorical. This is the usual reason for needing to use factor. (Question 2, in
the second paragraph of the description of the data, gives you a hint for this one.)

lmer is like lm in that if you have an explanatory variable that is recorded as a number, it will
be treated as quantitative, so that without the factor, these models will fit a linear trend in
day for each treatment (like an ANCOVA model, but one with a random effect of animal). As
you saw from the interaction plot, the trend is not linear: the animals grow more slowly at the
beginning and end, and you might guess that by the last observation, at 133 days, they are
fully grown and will not gain any more weight.
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(e) [2] What do you conclude from Figure 14? Explain briefly.

My answer:

The top analysis, cattle.1, says that there is a significant interaction (P-value 0.00012) be-
tween treatment and day: that is, the pattern of weight over time is different for the two
treatments. Give me a P-value so that I know you’re looking at the correct one.

That’s where you stop: you cannot (yet) say anything about why the interaction is significant,
and because the interaction is significant, you should not look at the analysis of main effects
in cattle.1a at all. (A student looked at cattle.1a first and said there was no effect of
treatment by itself but then looked at the interaction and said that the effect of time does
depend on treatment. This seemed like a fair way to say it, getting at the idea that the
interaction is the most important thing. I wouldn’t have done it this way, but I can’t really
fault doing so.)

Extra: I admit that I put cattle.1a in as a bit of misdirection, to make sure that you were
confident enough to know not to look at it. The place where you would look at it is if the
interaction had not been significant, and then you would have been able to conclude that there
was an effect of time but not of treatment. Such a conclusion, though, is inconsistent with
what we actually found: if there is actually no effect of treatment, it cannot be that the effect
of time is different for the two treatments (that we just said are actually the same).

If you go back to Figure 13, you see that the reason for that significant interaction must be
that the blue trend pops above the red one after about day 100. We have seen much more
spectacular interaction effects than this one, and it seems like a very small P-value for such a
small interaction effect. My guess is that once you allow for differences among animals (using
the animal random effect) and the clear time effect, there is not a lot of random variation left,
and so even a small effect can be strongly significant.

(f) [2] The code needed to run a repeated measures analysis via MANOVA is shown in Figure 15. Why
specifically was it necessary to begin with the pivot_wider?

My answer:

The MANOVA analysis needs the data wider (one point) — specifically, it needs all the mea-
surements for one animal in one row, with a separate column for each time point (the other
point). If you get the second point, even without specifically saying anything about “wider”,
you get the first one as well. If you can say clearly what kind of data layout you need, that’s
the key thing.

Saying that we need to make a response variable is another way to get the first point, but you
still need to say “one column per day” (or “one row per animal”) to get the second one.

Extra: When you were doing (b), you might have been thinking about how normally
pivot_longer is done before drawing a graph or doing a mixed-model analysis. That’s
because we usually get the data in wider format first and we have to make it longer to do those
things. But this one is the other way around: the data came to us long, so it was easier to do
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a graph and the mixed-model analysis first, and then make it wider to do the MANOVA-style
analysis.

(g) [4] The output from a repeated measures MANOVA is long. Some selected parts of the output,
in the same order that they would be in the full output, are shown in Figure 16. What do you
conclude from this output? Describe your process clearly (there are several steps to get right), and
give the (rounded-off) numerical value of any P-values you use.

My answer:

We need to test the interaction.

• Begin by testing for sphericity, using the output from the second line of code. The P-value,
from the second line of the table, is 8.9 × 10−85, astonishingly small, so sphericity fails.

• That means we need to use one of the adjusted P-values below the third line of code. My
recommendation is Huynh-Feldt (on the right); the P-value for the interaction is 0.0235.
(I have no objection if you use Greenhouse-Geisser (on the left) instead, and get a P-value
of 0.0254.)

• The interaction is significant still, and so the trend of weight over time is different for the
two treatments.

• As before, going further is a mistake.

One point for doing (or appropriately not doing) each of those. Crowdmark lets you add point
values to comments, either as a deduction (which is what I usually use), or as an addition,
which is what I used here. Thus, a correct answer has four one-point comments on it, and if
you are missing any of them, it means you did not get far enough to get the relevant point.

The P-value from the first line of code, 0.00018, is very like the one for the mixed model, but
that is wrong here because sphericity fails (and therefore you cannot use the output from the
first line of code at all). Note that the adjustment to the P-value is a substantial one: it goes
from very strongly significant to barely significant at all, perhaps because sphericity fails so
badly. (The eps values in the bottom output are a lot less than 1, indicating that sphericity
has gone badly wrong. On one of the assignments, you might have run into a warning about
eps values being bigger than 1, which they logically shouldn’t be, but such a value meant that
there was nothing wrong with sphericity at all.)
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5. A number of measurements were taken on the skulls of kangaroos. These kangaroos were known to be
of three different species. Some of the data is shown in Figure 17. The species have long names; in this
question, you may refer to them by the first letter of their names, F, G, or M as appropriate.

(a) [2] Some analysis is shown in Figure 18. What do you conclude from this analysis?

My answer:

This is a MANOVA, predicting the six quantitative variables from species. The P-value is very
small, so species has some effect on some or all of the response variables. More than that we
can not say, but there are some differences on something among species to find.

(b) [2] Why is it reasonable to run a discriminant analysis here? Explain briefly.

My answer:

We want to find an association between the categorical variable species and the various mea-
surements, to determine what makes the species different or how we can most easily tell them
apart.

Or, take the angle that this is a followup to the MANOVA: we learned that there are some
differences on some of the responses between the species, and the discriminant analysis will tell
us which ones and how.

(c) [2] A discriminant analysis was run, with the results shown in Figure 19. Why are there two linear
discriminants, rather than some other number?

My answer:

There are three groups (species) and six variables, and the smaller of 3 − 1 and 6 is 2.

This was meant to be an easy one.

(d) [2] In Figure 19, would you expect the second linear discriminant to distinguish any of the species?
Explain briefly.

My answer:

No (or, at least, “probably not”), because it has a (very) small proportion of trace. We would
expect almost all of the distinguishing of species to happen with the first linear discriminant.
(But see later.)

Make sure you mention the words “proportion of trace”, or else it is not clear where the number
you are citing comes from.
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(e) [2] Which two of the measurements are the least important in LD1? Explain briefly.

My answer:

The most important ones are those whose coefficient is farthest from zero, so the two least
important ones have coefficient closest to zero: nasal.width and mandible.depth.

That means that the four variables nasal.length, ramus.height, zygomatic.width, and
lacrymal.width are important in LD1, but it was easier to ask you (and easier to grade!)
if I asked you for only two variables.

Strictly speaking, “smallest” is not quite right by itself, because what you want is “smallest in
size” or “smallest in absolute value” or “closest to zero”. What about a very negative coefficient,
like the one for zygomatic.width? Does that count as “smallest”?

Extra: These coefficients are all pretty small. This is because the data values are on the large
side (values in the hundreds: see Figure 17) so that a one-unit change in any of them would go
with a tiny change in LD1 score.

(f) [2] What combination of values of two of the variables would make the score on LD2 small (that is,
negative)? Explain briefly.

My answer:

The two most important variables in LD2 are nasal.width (negative) and lacrymal.width
(positive). That means that in order to get a small (negative) LD2 score, you need a large value
of nasal.width and a small value of lacrymal.width.

(g) [2] Some further analysis and a graph is shown in Figure 20. In the code above the graph, the
shape = species draws points of different shapes for the different species (rather than drawing
them all as circles). What does the graph tell you about how easy the species are to distinguish? I
am looking for two distinct comments.

My answer:

This is a plot of LD1 score vs LD2 score for all the kangaroos.

• The fuliginosus (F) kangaroos are mostly on the left of the plot (low LD1 score), and so
seem to be easy to distinguish from the others.

• The other two species (green and blue points) are mainly mixed together on the right of
the plot (high LD1 score). If you prefer, say that melanops (M) is mainly at the top and
giganteus (G) is mostly at the bottom (high and low LD2 scores respectively), but I think
you ought to mention that they are at least somewhat mixed up.

In the light of what we said about LD2 before, I actually think it is surprising that it distinguishes
these two species as much as it does.

Extra: I found the green and blue circles I drew first a little difficult to distinguish (and, as
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far as I know, my colour vision is all right), so I added the shape to the graph to make green
triangles and blue squares. I hope that makes it a bit easier to distinguish the two sets of points
on the right. I will have this printed in colour for the exam, but I never quite know how well
the printing is going to come out.

(h) [2] A table is shown in Figure 21. How does this table support your two conclusions of the previous
part?

My answer:

This is a “confusion matrix”, or table of how often kangaroos of each species are misclassified:

• all 36 of the fuliginosus (F) kangaroos were correctly classified, which is consistent with
them being on the left in the graph.

• several of the kangaroos of the other two species were wrongly classified, which is consis-
tent with their being intermingled on the graph. (You might imagine that a kangaroo
with an LD2 score near zero could have come from either species G or M.)

You might add that the majority of kangaroos of the other two species were correctly classified,
particularly giganteus (G), which is consistent with them being mostly, though not exclusively,
at the bottom of the graph.
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6. 15 sports fans were asked to rank seven sports according to which one they would most like to play
(rated 7) down to which one they would least like to play (rated 1). The data are shown in Figure 22,
in a dataframe called ranks.

(a) [2] In preparation for a cluster analysis, a function to work out the dissimilarity between rows
(individuals) i and j is shown in Figure 23. Why does it make sense for the dissimilarity to be
based on the sum of squares of the differences between the ratings awarded to each sport by the
two individuals? (Hint: what does it mean for individuals to be similar or dissimilar?)

My answer:

Two individuals should be similar if their ratings for each of the seven sports are about the
same (example: individuals 2 and 3 in Figure 22, which are actually identical). In that case,
the differences will all be small, and the sum of squares of them will be small.

Two individuals should be dissimilar if at least some of their ratings are very different (example:
individuals 3 and 4 in the Figure). In that case, the big differences will become even bigger
when squared, and the sum of squares of them will be large.

I was pretty relaxed about how close to this you needed to get, and if you said something sort
of relevant without getting to what I thought was worth 2, you got 1.

Extra: I’m not expecting you to be able to figure out exactly what the function does, especially
not under exam conditions, but the important line is the one that defines diss (the second-last
line of the function), which is indeed based on the sum of the squared differences between the
individuals’ ratings.

(b) [3] A cluster analysis is run as shown in Figure 24. The individuals are numbered 1 through 15, in
the order shown in Figure 22. In the display of ranks.1$merge at the bottom of the output, what
is the meaning of the two numbers in row 6 (displayed with [6,] on the left), and how does this
appear on the dendrogram?

My answer:

Negative numbers denote individuals, and positive numbers denote clusters. Thus, in row 6,
individual 10 is being joined to the cluster formed in step 2 (one point), which consists of
individuals 7 and 11 (the second point).

This appears on the dendrogram in the middle cluster, where individuals 7 and 11 are combined
(on the right), and later individual 10 is combined with that cluster to form a cluster with
individuals 7, 10, and 11 in it. The third point. Describe as clearly as you can where to find
this happening. (Individuals 6 and 9 are combined with that cluster, but not until later.)

I might have deducted only a half point from you for missing the last thing if you otherwise
clearly understood what was going on, on the grounds that the most important thing here was
recognizing that the merge output meant that individual 10 was joined to the cluster containing
individuals 7 and 11.
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(c) [2] Figure 25 shows the individuals (in column id), the cluster membership, and the rating given
by each individual to each sport. Cluster 3 is shown as the middle cluster on the dendrogram. Why
do you think these individuals ended up in the same cluster?

My answer:

They ended up in the same cluster because they are somehow similar. Look at Figure 25 to
see what they have in common. The most obvious thing is that they all gave a high score to
Swimming (7 with one 6), and so cluster 3 consists of individuals who want to participate in
swimming.

I think this is the best answer, but it is also reasonable to look for low scores. For example,
cluster 3 mostly consists of people who do not want to play baseball or football.

Or you can take the angle that all their ranks are close together (that is to say, they like the
same things and don’t like the same things).

Somebody even went a step further and suggested that these people like individual sports and
don’t like team sports.

Extra: you can eyeball the other clusters in the same way. People in cluster 1 want to play
tennis, and people in cluster 2 want to play baseball.

These data came from a much larger dataset (130 people), but I restricted it to these 15 people
so that you would have an easier dendrogram to look at. (A dendrogram with 130 individuals
is rather a hard to read plot!)

7. A consumer’s organization collected information about 111 models of car. Eleven variables were mea-
sured, specifically: Length of entire car, Wheelbase (distance between front and rear wheels), Width of
car, Height of car, FrontHd (the distance between a front-seat passenger’s head and the car roof), RearHd
(same, but for a rear-seat passenger), FrtLegRoom (leg room in the front), RearSeating (distance from
back of front seats to back of rear seats), FrtShld (shoulder room in front), RearShld (shoulder room in
rear), Luggage (luggage area). The variables are scaled to have a median and IQR that will make them
resemble 𝑧-scores. Some of the data are shown in Figure 26.

We will aim to distinguish the cars by clearly fewer variables than these eleven. The full dataframe is
called cars; I also created a dataframe cars_numeric that has only the quantitative columns.

(a) [2] Using the information in Figure 27, how would you justify looking at three principal components,
rather than more or fewer? Explain briefly. (I am looking for two distinct points.)

My answer:

• In the scree plot, there is a clear elbow at 4, suggesting that we should use 4 − 1 = 3
components.

• In the summary of the principal components, 3 components explain 81% of the variability,
which is acceptably high. (Or something like that.)

As an alternative to the second point, note that the elbow at 4 is “a long way down the
mountain”, or “in the scree”, or something similar, which gets at the same point. There is
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an elbow at 7 also, suggesting six components (or one at 9 suggesting eight), but this is too
many given that there are 11 variables and we are trying to summarize them by a much smaller
number.

As an alternative alternative, another way of assessing whether the components you are thinking
about using are “meaningful” is to see whether their SD is greater than 1 (this is called Kaiser’s
criterion, which I didn’t talk about in lecture this time but is probably in the course materials
somewhere). Here, that also points to 3 components. One of the nice things about this dataset
is that you can get to 3 components several different ways, and as long as you can find elbow
plus one of the other ways, you are good.
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(b) [2] The loadings on the first three principal components are shown in Figure 28. Does component
1 have a clear interpretation, or not? Explain briefly.

My answer:

The loadings of the first component on all the variables are about equal, so the first component
is really “a bit of (almost) everything”. Or, take the angle that it is hard to tell whether a
variable belongs to the first component or not, because none of the loadings are clearly large
or (mostly) small.

So I would say it does not have a clear interpretation.

If you want to say that it does have a clear interpretation because it’s basically an average
of everything, and that interpretation is “size”, then be my guest. (The idea of component 1
being “size” is quite common, and this is a good example of it happening. A high scorer on
component 1 here is a generally “big” car. We see later that a high scorer on factor 1 is also
a “big” car, but in a different sense.) I’ll read your answer and grade it not according to how
well it agrees with mine, but on how consistent a job it does of answering the question, which
this sort of answer 100% does.

(c) [2] I ran a factor analysis and obtained the factor loadings shown in Figure 29. Which are the most
important four variables in factor 1? Explain (very) briefly.

My answer:

The ones with the largest loadings (in size, but they are all positive): length, wheelbase, width,
and front shoulder room.

I think most people got these.

Note how the interpretation is much clearer for this factor analysis than it was for the principal
components; I asked you for four variables because it pretty clear that those were in factor 1
and the others were out. This is the value of the rotation that goes with a factor analysis.

(d) [2] What do cars that score high on factor 1 have in common, in a few words? Explain briefly.

My answer:

These cars must be large on the four variables you mentioned in the previous part. Large length
and wheelbase mean that the car is long; large width and shoulder room mean that it is wide.
So these cars must be just generally big (large in size).

(e) [3] What do cars that score high on factor 3 have in common? Explain briefly.

My answer:

Do the same two things you just did for factor 1: find out which variables need to be high, and
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then say what those have in common.

Here that is rear seating, rear shoulder room, luggage space.

These cars seem to have a lot of space for passengers or cargo.

Extra: I would have expected these to be vans, but the vans are actually top of factor 2, which
is mainly height.

I figured you might like to see which actual cars came out on top of each factor.

scores <- data.frame(carname = cars$Carname, score = cars.2$scores)

There is a technicality here, because the scores are actually in a matrix, but if you add them
to an old-fashioned data.frame, the columns of the matrix will be used as columns of the
dataframe. (tibble is a lot more picky about what it will let you glue together; you could use
it here, but I suspect there would be some messing about with unnest.)

Anyhow, the largest ones on Factor 1 are:

scores %>% slice_max(score.Factor1, n = 10)

carname score.Factor1 score.Factor2 score.Factor3
LincolnTownCar 2.820438 -0.0688464 0.7860368
FordLTDCrownVictoria 2.727730 -0.3949726 0.5242082
CadillacBrougham 2.648630 -0.1074826 0.7697818
ChevroletCaprice 2.132903 -0.0245915 0.6672689
ChevroletAstro 1.727722 2.9742072 -1.7096809
FordThunderbird 1.578431 -0.6781103 0.2977158
CadillacDeVille 1.552789 0.1486800 0.6931368
BuickRiviera 1.374394 -0.5402926 0.1834544
ChevroletLuminaAPV 1.349803 1.8891140 -0.6582082
ChevroletCamaro 1.325792 -0.9693265 -0.2338936
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You might recognize these as “boats”, giant American cars from back in the day when the
people who drove them didn’t have to worry about the price of gas.

Factor 2 was height:

scores %>% slice_max(score.Factor2, n = 10)

carname score.Factor1 score.Factor2 score.Factor3
VolkswagenVanagon 0.5213784 4.254193 -1.2488753
ChevroletAstro 1.7277220 2.974207 -1.7096809
NissanVan -0.6878471 2.893194 -1.7345945
MitsubishiWagon -0.8400708 2.881734 -1.8116823
FordAerostar 0.7921322 2.826875 -0.8355978
MazdaMPV 0.5462066 2.266413 -1.2458215
DodgeGrandCaravan 0.8244277 2.024106 -0.5077064
NissanAxxess -0.6688422 1.967635 -0.5597348
DodgeCaravan 0.7579424 1.941608 -1.3700894
ChevroletLuminaAPV 1.3498029 1.889114 -0.6582082

and this is where the vans show up.

Factor 3 was a bit odd: there was nothing unusually large, but there were some unusually small
ones, so I display these in ascending order:

scores %>% slice_min(score.Factor3, n = 5)

carname score.Factor1 score.Factor2 score.Factor3
Nissan300ZX 1.0573148 -1.718415 -3.876875
ChevroletCorvette 0.9084246 -2.069313 -3.755734
HondaCivicCRX -0.4674789 -1.536427 -3.693839
MazdaRX7 -0.0314903 -1.617555 -3.559693
MazdaMX5Miata -0.7060277 -1.669412 -3.522470

These are cars that don’t have much room for either passengers or cargo. You see that they
are mostly Japanese cars; when the price of gas first went up (in the 1970s), the American
carmakers didn’t realize fast enough that there was a market for smaller fuel-efficient cars, and
the Japanese carmakers took advantage.

(f) [2] Figure 30 shows the uniquenesses. Why does FrtLegRoom have a high uniqueness?
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My answer:

This must be because FrtLegRoom does not feature in any of our factors. If you look back
at Figure 29, you’ll see that FrtLegRoom is not an important part of any of the three factors
(its biggest loading in size is −0.361 on factor 2, not nearly big enough to be considered an
important part of factor 2).



STAD29 Final Exam Page 25

Use this page if you need more space. Be sure to label any answers here with the question and part they
belong to.
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Numbered Figures begin here, in with caption and label

library(MASS)
library(ggbiplot)
library(tidyverse)
library(marginaleffects)
library(lme4)
library(car)

Figure 1: Packages loaded

low birth weight (logistic)

low lwt smoke
no 120 yes
yes 148 no
yes 105 no
no 155 no
no 95 yes
yes 109 no
yes 102 yes
no 140 yes
yes 101 yes
no 109 yes
no 182 no
no 131 no
no 250 yes
no 130 no
no 133 yes

Figure 2: Low birth weight data (randomly chosen rows)
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birthwt.1 <- glm(factor(low) ~ lwt + smoke, data = birthwt, family = "binomial")
summary(birthwt.1)

Call:
glm(formula = factor(low) ~ lwt + smoke, family = "binomial",

data = birthwt)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.62200 0.79592 0.781 0.4345
lwt -0.01332 0.00609 -2.188 0.0287 *
smokeyes 0.67667 0.32470 2.084 0.0372 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 224.34 on 186 degrees of freedom
AIC: 230.34

Number of Fisher Scoring iterations: 4

Figure 3: Low birth weight logistic regression
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new <- datagrid(model = birthwt.1, lwt = c(110, 125, 140))
new

low smoke lwt
no no 110
no no 125
no no 140

cbind(predictions(birthwt.1, newdata = new)) %>%
select(smoke, lwt, estimate)

smoke lwt estimate
no 110 0.3007605
no 125 0.2604667
no 140 0.2238432

new <- datagrid(model = birthwt.1, smoke = c("no", "yes"))
new

low lwt smoke
no 130 no
no 130 yes

cbind(predictions(birthwt.1, newdata = new)) %>%
select(smoke, lwt, estimate)

smoke lwt estimate
no 130 0.2478400
yes 130 0.3932927

Figure 4: Low birth weight predictions
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display (two-way anova)

time panel emergenc
17 1 1
14 1 1
15 2 1
12 2 1
21 3 1
24 3 1
25 1 2
24 1 2
22 2 2
19 2 2
29 3 2
28 3 2
31 1 3
24 1 3
28 2 3
31 2 3
32 3 3
37 3 3
14 1 4
13 1 4
9 2 4

10 2 4
15 3 4
19 3 4

Figure 5: Display panels data
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display.1 <- aov(time ~ panel * emergenc, data = display)
summary(display.1)

Df Sum Sq Mean Sq F value Pr(>F)
panel 2 232.7 116.4 20.094 0.000148 ***
emergenc 3 1052.5 350.8 60.573 1.61e-07 ***
panel:emergenc 6 28.9 4.8 0.832 0.567501
Residuals 12 69.5 5.8
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

display.2 <- aov(time ~ panel + emergenc, data = display)
summary(display.2)

Df Sum Sq Mean Sq F value Pr(>F)
panel 2 232.7 116.4 21.29 1.81e-05 ***
emergenc 3 1052.5 350.8 64.16 8.28e-10 ***
Residuals 18 98.4 5.5
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Figure 6: Display panels: two analyses

TukeyHSD(display.2)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = time ~ panel + emergenc, data = display)

$panel
diff lwr upr p adj

2-1 -2.000 -4.983847 0.9838467 0.2284740
3-1 5.375 2.391153 8.3588467 0.0006236
3-2 7.375 4.391153 10.3588467 0.0000173

$emergenc
diff lwr upr p adj

2-1 7.333333 3.517810 11.14885716 0.0001980
3-1 13.333333 9.517810 17.14885716 0.0000001
4-1 -3.833333 -7.648857 -0.01780951 0.0487057
3-2 6.000000 2.184476 9.81552383 0.0016255
4-2 -11.166667 -14.982190 -7.35114284 0.0000009
4-3 -17.166667 -20.982190 -13.35114284 0.0000000

Figure 7: Display panels: Tukey analysis
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vocab (ancova)

year education vocabulary
1974 8 3
1994 12 5
1974 12 7
1974 15 5
1994 12 3
1974 13 10
1994 20 10
2014 14 6
2014 12 6
1994 12 5
1994 12 7
2014 19 6
2014 16 7
2014 20 9
1994 12 5
1994 12 9
1994 16 7
1974 14 9
1974 12 1
1974 18 9

Figure 8: Education and vocabulary data (some randomly chosen rows)
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ggplot(vocab, aes(x = education, y = vocabulary, colour = factor(year))) +
geom_jitter() + geom_smooth(method = "lm")

`geom_smooth()` using formula = 'y ~ x'

2.5

5.0

7.5

10.0

5 10 15 20
education

vo
ca

bu
la

ry

factor(year)

1974

1994

2014

Figure 9: Scatterplot of education and vocabulary by year
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vocab.1 <- lm(vocabulary ~ education * factor(year), data = vocab)
summary(vocab.1)

Call:
lm(formula = vocabulary ~ education * factor(year), data = vocab)

Residuals:
Min 1Q Median 3Q Max

-5.1272 -1.3613 0.0457 1.2094 4.5447

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.09583 1.32000 1.588 0.11570
education 0.33594 0.10909 3.080 0.00272 **
factor(year)1994 -0.73778 1.83257 -0.403 0.68816
factor(year)2014 1.83017 1.84771 0.991 0.32447
education:factor(year)1994 0.03545 0.14032 0.253 0.80111
education:factor(year)2014 -0.14510 0.13968 -1.039 0.30158
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.758 on 94 degrees of freedom
Multiple R-squared: 0.2675, Adjusted R-squared: 0.2285
F-statistic: 6.866 on 5 and 94 DF, p-value: 1.679e-05

drop1(vocab.1, test = "F")

Df Sum of Sq RSS AIC F value Pr(>F)
NA NA 290.6165 118.6834 NA NA

education:factor(year) 2 7.157061 297.7735 117.1163 1.157477 0.3187163

Figure 10: Education and vocabulary analysis of covariance
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vocab.2 <- lm(vocabulary ~ education + factor(year), data = vocab)
summary(vocab.2)

Call:
lm(formula = vocabulary ~ education + factor(year), data = vocab)

Residuals:
Min 1Q Median 3Q Max

-5.1155 -1.3130 0.0278 1.1293 4.4720

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.59073 0.71278 3.635 0.00045 ***
education 0.29373 0.05402 5.438 4.1e-07 ***
factor(year)1994 -0.14335 0.45417 -0.316 0.75297
factor(year)2014 -0.14745 0.46826 -0.315 0.75352
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.761 on 96 degrees of freedom
Multiple R-squared: 0.2495, Adjusted R-squared: 0.226
F-statistic: 10.64 on 3 and 96 DF, p-value: 4.221e-06

Figure 11: Education and vocabulary analysis of covariance 2
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kenward cattle (repeated measures)

animal trt day weight
A1 A 0 233
A1 A 14 224
A1 A 28 245
A1 A 42 258
A1 A 56 271
A1 A 70 287
A1 A 84 287
A1 A 98 287
A1 A 112 290
A1 A 126 293
A1 A 133 297
A10 A 0 232
A10 A 14 240
A10 A 28 247
A10 A 42 263
A10 A 56 275
A10 A 70 286
A10 A 84 294
A10 A 98 302
A10 A 112 308
A10 A 126 319
A10 A 133 326
A11 A 0 234
A11 A 14 237
A11 A 28 259

Figure 12: Cattle data (some)
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cattle %>%
group_by(trt, day) %>%
summarize(mean_weight = mean(weight)) %>%
ggplot(aes(x = day, y = mean_weight, colour = trt, group = trt)) +
geom_point() + geom_line()

`summarise()` has grouped output by 'trt'. You can override using the `.groups`
argument.
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Figure 13: Cattle data interaction plot
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cattle.1 <- lmer(weight ~ trt * factor(day) + (1 | animal), data = cattle)
drop1(cattle.1, test = "Chisq")

npar AIC LRT Pr(Chi)
NA 4866.584 NA NA

trt:factor(day) 10 4881.634 35.04987 0.0001224

cattle.1a <- lmer(weight ~ trt + factor(day) + (1 | animal), data = cattle)
drop1(cattle.1a, test = "Chisq")

npar AIC LRT Pr(Chi)
NA 4881.634 NA NA

trt 1 4879.839 0.2047196 0.650938
factor(day) 10 6721.837 1860.2032319 0.000000

Figure 14: Cattle data mixed model analysis

# pivot wider
cattle %>%
pivot_wider(names_from = day, values_from = weight) -> cattle_wider

# set up for manova
cattle_wider %>% select(-animal, -trt) %>%
as.matrix() -> response

cattle.2 <- lm(response ~ trt, data = cattle_wider)
times <- colnames(response)
times.df <- data.frame(times = factor(times))

cattle.3 <- Manova(cattle.2, idata = times.df, idesign = ~times)

Figure 15: Cattle repeated measures MANOVA code



STAD29 Midterm Exam Figures

summary(cattle.3)$univariate.tests

Sum Sq num Df Error SS den Df F value Pr(>F)
(Intercept) 53035479 1 133128 58 23106.1031 < 2.2e-16 ***
trt 455 1 133128 58 0.1982 0.6578077
times 846142 10 37638 580 1303.9048 < 2.2e-16 ***
trt:times 2264 10 37638 580 3.4891 0.0001767 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(cattle.3)$sphericity

Test statistic p-value
times 3.399e-05 8.9223e-85
trt:times 3.399e-05 8.9223e-85

summary(cattle.3)$pval.adjustments

GG eps Pr(>F[GG]) HF eps Pr(>F[HF])
times 0.2415572 2.496758e-96 0.2528023 1.100120e-100
trt:times 0.2415572 2.535322e-02 0.2528023 2.346705e-02
attr(,"na.action")
(Intercept) trt

1 2
attr(,"class")
[1] "omit"

Figure 16: Cattle repeated measures MANOVA output
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kanga (discrim)

species nasal.length nasal.width ramus.height zygomatic.width mandible.depth lacrymal.width
fuliginosus 552 205 751 919 194 454
giganteus 755 268 754 902 206 467
fuliginosus 574 212 641 822 191 405
giganteus 756 249 731 903 198 467
melanops 565 204 556 764 156 385
giganteus 687 223 688 873 205 432
giganteus 682 253 706 875 194 455
fuliginosus 522 190 629 799 179 374
fuliginosus 719 253 765 946 215 473
fuliginosus 554 195 657 837 188 392
melanops 893 260 824 994 216 499
fuliginosus 625 250 739 934 211 470
fuliginosus 497 167 648 807 178 390
giganteus 629 222 643 824 181 416
giganteus 616 220 652 805 180 412
melanops 800 245 813 939 240 492
fuliginosus 737 278 880 1090 271 535
melanops 690 242 708 855 210 451
giganteus 626 226 651 839 173 441
giganteus 734 245 724 920 193 462

Figure 17: Kangaroo skull data, variables of interest, randomly chosen rows

kanga %>%
select(nasal.length:lacrymal.width) %>%
as.matrix() -> response

kanga.0 <- manova(response ~ species, data = kanga)
summary(kanga.0)

Df Pillai approx F num Df den Df Pr(>F)
species 2 1.0065 15.873 12 188 < 2.2e-16 ***
Residuals 98
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Figure 18: Kangaroo skull analysis 1
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kanga.1 <- lda(species ~ nasal.length + nasal.width + ramus.height +
zygomatic.width + mandible.depth + lacrymal.width, data = kanga)

kanga.1

Call:
lda(species ~ nasal.length + nasal.width + ramus.height + zygomatic.width +

mandible.depth + lacrymal.width, data = kanga)

Prior probabilities of groups:
fuliginosus giganteus melanops
0.3564356 0.3663366 0.2772277

Group means:
nasal.length nasal.width ramus.height zygomatic.width

fuliginosus 614.1944 222.4722 728.5000 912.6944
giganteus 707.3243 246.8919 686.4595 869.8649
melanops 684.1071 233.2857 695.2143 860.5000

mandible.depth lacrymal.width
fuliginosus 205.7500 442.3056
giganteus 194.3784 444.2973
melanops 194.7500 444.3214

Coefficients of linear discriminants:
LD1 LD2

nasal.length 0.027729200 0.003536769
nasal.width -0.006006286 -0.067051346
ramus.height -0.013524008 0.016312892
zygomatic.width -0.025345101 -0.032317300
mandible.depth -0.008867705 -0.003186253
lacrymal.width 0.022430867 0.060543739

Proportion of trace:
LD1 LD2

0.9359 0.0641

Figure 19: Kangaroo skulls, discriminant analysis
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p <- predict(kanga.1)
d <- cbind(kanga, p)
ggplot(d, aes(x = x.LD1, y = x.LD2, colour = species, shape = species)) + geom_point()
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Note that the points on the plot are distinguished by both colour and shape (plotting symbol).

Figure 20: Kangaroo skulls, further analysis

with(d, table(obs = species, pred = class))

pred
obs fuliginosus giganteus melanops
fuliginosus 36 0 0
giganteus 0 32 5
melanops 1 10 17

Figure 21: Kangaroo skulls, a table



STAD29 Midterm Exam Figures

cluster

Baseball Football Basketball Tennis Cycling Swimming Jogging
7 5 1 6 4 3 2
7 5 6 3 4 1 2
7 5 6 3 4 1 2
4 1 5 7 3 2 6
6 5 7 1 2 3 4
2 5 4 1 6 7 3
3 1 5 4 6 7 2
3 4 1 7 6 5 2
2 1 3 5 4 7 6
1 3 5 7 4 6 2
4 2 3 5 6 7 1
7 4 3 2 1 5 6
3 1 4 7 6 2 5
4 7 5 6 2 3 1
6 7 5 3 2 1 4

Figure 22: Sports preference data

my_dist <- function(d, i, j) {
d %>% slice(i, j) %>%
mutate(indiv = c("row1", "row2")) %>%
pivot_longer(-indiv, names_to = "sport", values_to = "rating") %>%
pivot_wider(names_from = indiv, values_from = rating) %>%
summarize(diss = sqrt(sum((row1 - row2)^2))) %>%
pull(diss)

}

Figure 23: Function to compute dissimilarity for sports ranking data



STAD29 Midterm Exam Figures

The data in ranks were first turned into a dist object, called rank_dist, and then the following code was
run:

ranks.1 <- hclust(rank_dist, method = "ward.D")
plot(ranks.1)
rect.hclust(ranks.1, 3)
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hclust (*, "ward.D")
rank_dist

H
ei
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ranks.1$merge

[,1] [,2]
[1,] -2 -3
[2,] -7 -11
[3,] -4 -13
[4,] -5 -15
[5,] -1 -8
[6,] -10 2
[7,] 1 4
[8,] -9 6
[9,] -14 5
[10,] -6 8
[11,] -12 7
[12,] 3 9
[13,] 10 12
[14,] 11 13

Figure 24: Cluster analysis for sports data
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id cluster Baseball Football Basketball Tennis Cycling Swimming Jogging
1 1 7 5 1 6 4 3 2
4 1 4 1 5 7 3 2 6
8 1 3 4 1 7 6 5 2
13 1 3 1 4 7 6 2 5
14 1 4 7 5 6 2 3 1
2 2 7 5 6 3 4 1 2
3 2 7 5 6 3 4 1 2
5 2 6 5 7 1 2 3 4
12 2 7 4 3 2 1 5 6
15 2 6 7 5 3 2 1 4
6 3 2 5 4 1 6 7 3
7 3 3 1 5 4 6 7 2
9 3 2 1 3 5 4 7 6
10 3 1 3 5 7 4 6 2
11 3 4 2 3 5 6 7 1

Figure 25: Individuals (in column id) and cluster memberships for sports preference data

cars (pca/factor)

Carname Length Wheelbase Width Height FrontHd RearHd FrtLegRoom
NissanPulsarNX -1.3333333 -1.2 -1.0 -4.0 1 -2.0 -1
InfinitiQ45 2.3333333 2.2 2.0 0.5 -2 -0.5 0
HondaPrelude -0.1111111 -0.2 -0.5 -3.0 -4 -2.0 2
HondaAccord 0.6666667 1.0 0.0 -0.5 2 0.0 1
FordAerostar -0.4444444 3.4 2.0 16.5 3 1.5 1
ChevroletCavalier 0.0000000 -0.2 -1.0 0.0 1 1.0 -1
Porsche944 -1.1111111 -1.4 0.0 -4.0 0 -2.0 4
SubaruLoyale -0.4444444 -1.0 -1.5 -1.0 -2 0.0 -1
GEOMetro -3.2222222 -1.8 -2.5 -1.5 -2 -0.5 -1
Mazda626 0.0000000 -0.2 -0.5 -0.5 0 0.0 -2
BuickRiviera 2.1111111 1.2 2.5 -1.5 0 0.0 0
PontiacLeMans -0.7777778 -0.6 -1.0 0.0 3 0.5 0
ChevroletLumina 2.1111111 1.2 1.5 1.0 2 1.5 1
ToyotaCelica -0.5555556 -0.6 0.5 -3.0 -3 -2.0 1
PontiacBonneville 2.2222222 1.8 2.0 0.5 1 2.0 1

Figure 26: Cars data (some rows and columns)
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cars.1 <- princomp(cars_numeric, cor = TRUE)
summary(cars.1)

Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Standard deviation 2.1859859 1.4764164 1.3821796 0.82691759 0.73804436
Proportion of Variance 0.4344122 0.1981641 0.1736746 0.06216297 0.04951904
Cumulative Proportion 0.4344122 0.6325763 0.8062509 0.86841391 0.91793295

Comp.6 Comp.7 Comp.8 Comp.9 Comp.10
Standard deviation 0.55143677 0.44712743 0.41450063 0.308496259 0.269616682
Proportion of Variance 0.02764386 0.01817481 0.01561916 0.008651813 0.006608469
Cumulative Proportion 0.94557681 0.96375163 0.97937079 0.988022601 0.994631070

Comp.11
Standard deviation 0.24301900
Proportion of Variance 0.00536893
Cumulative Proportion 1.00000000

ggscreeplot(cars.1)
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Figure 27: Cars principal components analysis and scree plot
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Comp.1 Comp.2 Comp.3
Length 0.36800447 0.26491429 0.15382216
Wheelbase 0.39303399 0.19208728 0.16487812
Width 0.36271313 0.08827474 0.37020532
Height 0.25231975 -0.48930844 0.04282917
FrontHd 0.27563231 -0.27414127 -0.05442509
RearHd 0.32033083 -0.37823667 -0.19691964
FrtLegRoom 0.03600793 0.41677436 0.32261159
RearSeating 0.28877687 0.13354004 -0.45373369
FrtShld 0.39776393 -0.04124462 0.27343479
RearShld 0.28585066 0.09344998 -0.46883122
Luggage 0.10803017 0.47489313 -0.40497703

Figure 28: Cars data: loadings of first three principal components

cars.2 <- factanal(cars_numeric, 3, scores = "r")
cars.2$loadings

Loadings:
Factor1 Factor2 Factor3

Length 0.837 0.346
Wheelbase 0.810 0.172 0.309
Width 0.959 0.157
Height 0.193 0.935
FrontHd 0.318 0.481 0.150
RearHd 0.200 0.831 0.291
FrtLegRoom 0.341 -0.361
RearSeating 0.180 0.251 0.803
FrtShld 0.867 0.388
RearShld 0.123 0.343 0.822
Luggage 0.106 -0.400 0.799

Factor1 Factor2 Factor3
SS loadings 3.382 2.472 2.295
Proportion Var 0.307 0.225 0.209
Cumulative Var 0.307 0.532 0.741

Figure 29: Cars data: factor analysis and factor loadings
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cars.2$uniquenesses

Length Wheelbase Width Height FrontHd RearHd
0.18046602 0.21837389 0.05494901 0.08052403 0.64476164 0.18494410
FrtLegRoom RearSeating FrtShld RearShld Luggage
0.75282443 0.25953381 0.09399943 0.19096693 0.18980421

Figure 30: Cars data: uniquenesses


	low birth weight (logistic)
	display (two-way anova)
	vocab (ancova)
	kenward cattle (repeated measures)
	kanga (discrim)
	cluster
	cars (pca/factor)

