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• regression (glowworm)
• logistic (kinase)
• ordinal logistic (faces)
• survival (larynx)
• two-way anova (wrinkle)

1. Female glow-worms attract males by glowing with part of their abdomen (called the “lantern”). Re-
searchers believe the brightness of glow might be related positively to mating success. They measure the
brightness of glow by the length of the lantern (in mm), and the mating success by the number of eggs
laid by the female. Some of the data are shown in Figure 2, with some summary statistics below that.

(a) [2] Based on Figure 3, do you think the researchers’ belief is supported by the data? Explain briefly.

My answer:

There is a significant relationship between lantern length and the number of eggs, with a P-
value of 0.0003. The slope is also positive, meaning that a longer lantern is associated with
a larger number of eggs. So the researchers’ belief is supported by the data. (A fairly gentle
warmup.)

(b) [2] Some predictions are shown in Figure 4, with the code that produced them at the top of the
Figure. What precisely do the confidence limits in the first row of predictions tell you?

My answer:

With 95% confidence, the mean number of eggs for all female glowworms with a lantern length
of 5mm is between 0.8 and 54.5.

The key part here is the “all female glowworms with a lantern length of 5mm”; those are what
you are predicting for.

(c) [3] Which one of the intervals in Figure 4 is shortest? Why does that make sense?

My answer:

The second one, for a lantern length of 12. (Haul out your calculator for this, or eyeball the
differences between conf.low and conf.high as about 50, 25, and 50 respectively, which is as
accurate as you need to get.) One gimme point.

A confidence interval for a mean response is shortest for the mean lantern length, which is 11.9
(look at the summary stats at the bottom of Figure 2). This is very close to the lantern length
of 12 that we predicted for, and so we would expect this interval to be shortest. (The other
two points.)
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(d) [3] Why does it make sense that the first interval in Figure 4 is shorter than the first interval in
Figure 5?

My answer:

The intervals in Figure 5 are prediction intervals, for the number of eggs of an individual
glowworm whose lantern length is as shown (see the code above the prediction intervals). These
are (much) more variable than the corresponding intervals for the mean response of many
glowworms (in Figure 4), because an individual glowworm can happen to have a very large or
small number of eggs just by chance, and the prediction intervals have to account for that. In
finding a confidence interval for the mean response, these extreme individuals are averaged out.

Another way to say this is that the uncertainty in Figure 4 comes from the uncertainty in the
intercept and slope (that come from our data being a sample rather than the whole population).
The uncertainty in Figure 5 contains that, but also the fact that an individual observation can
be a long way above or below the trend, which adds (considerably) to the length of the interval.
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2. Over time, a hospital admitted 360 patients with suspected heart attacks. Some of the patients had
actually had a heart attack, but some had not (they had had something that looked like a heart attack,
but was actually something else). A doctor believes that whether a suspected heart attack actually is
one might depend on the level of creatinine kinase (something that can be measured with a blood test).
However, creatinine kinase level can only be measured to a certain degree of accuracy, and so in a sample
like this one, you would expect several patients to have the same creatinine kinase level. The data are
shown in Figure 6. The three columns are:

• mck: the measured creatinine kinase level
• ha: the number of patients with that creatinine kinase level whose suspected heart attack actually

was a heart attack
• nha: the number of patients with that creatinine kinase level whose suspected heart attack actually

was not a heart attack.

(a) [2] Some code and the output from the code is shown in Figure 7. Why is it necessary to do this in
preparation for the analysis that follows?

My answer:

This is creating a response matrix for a logistic regression, with the number of “successes”
(actual heart attacks) in one column and the number of “failures” (suspected heart attacks that
were actually not) in the other.

It is necessary because the data were laid out with more than one individual per row. (The
points for saying this.)

There are some clues that this is the case: the question says that there were 360 individuals
but there are only 13 rows in the dataframe. Also, the last two columns are frequencies, rather
than something like a column called heart_attack with values yes and no as you would expect
if there were one row per individual patient.

(b) [2] A model and its output are shown in Figure 8. Does creatinine kinase level predict whether or
not a suspected heart attack actually is one, and if so, is it a higher or lower value that tends to go
with an actual heart attack? Explain briefly.

My answer:

The estimate for mck is (strongly) significant, with a P-value less than 2.2 × 10−16, so it most
certainly does help to predict (one point). The model is predicting the probability of a suspected
heart attack being real (the first column of response), and the estimate for mck is positive, so
a higher value of mck goes with a higher probability of the suspected heart attack being a real
one.

Extra: if you look back at the data, at low levels of mkc, almost all the suspected heart attacks
actually were not, but at high levels, almost all of them were actually heart attacks.
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(c) [2] A plot of predictions from the model is shown in Figure 9, with the code used to produce the
plot above it. What are two ways in which this plot supports your conclusions from the previous
part (or contradicts them, if that’s what you think it does)?

My answer:

The plot is a home-made version of what plot_predictions (from marginaleffects) would
look like, if it worked for this model (it does not because the response we made is not part
of the dataframe). The upper and lower points on the ribbon all the way across are the upper
and lower 95% confidence limits for the predicted probability.

Above, we said that a higher value of mck goes with a higher probability of a suspected heart
attack being a real one, and that is shown on this graph by the predicted probability increasing
as mck increases. One rather obvious point.

We also said that there is a significant relationship between mck and the probability of a sus-
pected heart attack being real. This shows up in the confidence interval being short at any
value of mck: the probability is estimated accurately, and the probability is definitely higher
for higher values of mck because the whole confidence interval is higher. Say something that
talks about the accuracy of estimation for the second point.

(d) [1] Some more predictions are shown in Figure 10, with the code that produced these predictions
shown at the top of the Figure. What are these predictions of?

My answer:

The log-odds of the probability that a suspected heart attack is a real one, as indicated by
the type = "link" on the predictions line. This is what a logistic regression is actually
predicting.
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(e) [2] How are the predictions in Figure 10 consistent with one (or two) of the numbers in Figure 8?
Explain briefly.

My answer:

My immediate reaction is to look at the changes from each prediction to the next: an increase
of almost exactly 0.7 from one to the next. Since mck increases by 20 each time, this increase
should be 20 times the “slope” estimate in Figure 8, which is about 0.035:
0.035 * 20

[1] 0.7

and so it is.

Another reasonable way to tackle this is to reproduce one of the predictions, using the intercept
as well as the slope from Figure 8. The intercept is about −3, so the predicted log-odds for mck
of 20 would be about
-3 + 20 * 0.035

[1] -2.3

and for 40 it would be
-3 + 40 * 0.035

[1] -1.6

which are close enough to the values shown in Figure 10. (Feel free to be more accurate than
this, but this is the idea.)

3. What determines whether a man is judged attractive by female college students? 38 men were rated for
attractiveness, on a scale from A (most attractive) to D (least attractive). Each of the men had two
other measurements taken:

• MaxGripStrength: the man gripped a handheld dynamometer in their dominant hand and squeezed
as hard as they could. The maximum of three grip strength measurements was taken (measured in
kilograms).

• SHR: shoulder to hip ratio; the circumference of the shoulders divided by the circumference of the
waist.

Some of the data are shown in Figure 11.

(a) [2] A model is fitted, as shown in Figure 12. Why did I use polr (from package MASS) rather than
something else?

My answer:

Our response variable Attractive is categorical with four categories (more than two), and those
categories have a natural order with A being most attractive and D being least. This means
we need to fit an ordinal logistic regression, which is what polr does. Roughly speaking, one
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point for “ordered” and one for “more than two categories”. If there were only two categories, it
wouldn’t matter whether the categories are ordered or not; you model the probability of being
in one of them, and then you can work out the probability of being in the other.

(b) [2] In the model shown in Figure 12, why do you think I added a squared term in SHR?

My answer:

I actually added this term because I expected there to be a shoulder-hip ratio that was rated
most attractive: that is to say, I expected rated attractiveness to go up and then down again
as SHR increased. If I had only a linear term in SHR, attractiveness would have to keep getting
better (or worse) as SHR increased. This seemed unlikely to me, as it seemed that a man with
a very large SHR (or, for that matter, a very small one) would look very oddly-shaped (and
therefore unattractive), that is to say, having very large or very small shoulders.

One point for saying that I wanted to model a non-linear relationship; the second is for coming
up with a plausible reason I might want to do so, given what the data represent. I was fairly
picky about whether you had earned the second point here.

(c) [2] Some predictions are shown in Figure 14. In the code above the predictions, why did I decide
to use pivot_wider?

My answer:

predictions gives us one long column of predictions, one predicted probability of each level of
attractiveness for each combination of grip strength and SHR. This is difficult to read (because
I want to see how overall attractiveness changes as SHR or grip strength change), so I re-format
it to have the response categories go across the page. Some reasonable discussion along these
lines.
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(d) [3] Look at Figures 13 and 14. How are they telling a consistent story about how MaxGripStrength
influences attractiveness? Explain briefly.

My answer:

The drop1 table says that MaxGripStrength is very far from being significant (one point). In
the predictions, we see that for any fixed value of SHR (say, comparing the first two rows), the
predicted probabilities for each attractiveness category are very close to each other (one point).
Thus, the effect of MaxGripStrength is very small or non-existent (the third point). You could
get away without explicitly saying all three of those things if it seemed clear to me that you
understood what was going on.

The obvious thing to do is to take out MaxGripStrength, but I wanted you to see what happens
if I left it in the model.

(e) [3] According to Figure 14, how would you describe the effect of SHR on attractiveness? Explain
briefly.

My answer:

Pick a value for MaxGripStrength (either one will do), and see how the probabilities of the
attractiveness categories change as SHR changes. The probability of attractiveness A goes up
and then down again, and correspondingly the probability of being rated D goes down and then
up again, so that the overall rating is highest at SHR of 1.2 and lower either side.

Make a statement about what happens to the overall attractiveness rating as SHR changes: for
example, look at the probabilities of both A and D and notice that they are both indicating the
same thing. For this, you need to do more than look at (say) rows 1 and 3, because you need
a picture of what is happening to attractiveness as SHR goes through all four values. Most
people who said there was an increasing or a decreasing effect were only looking at two values
of SHR, not at all four of them.

Saying something like “attractiveness increases up to an SHR of 1.2 and decreases again after
that” is also good, and you could probably get away with only looking at the probability of A
to see what happens here.

Extra: I didn’t ask you about the significance of SHR; according to Figure 13, neither it nor the
squared term seem to be especially close to significance. But I wanted to try a squared term,
because of what the data are about, and I suspect that SHR and its square are pretty highly
correlated, so that there is multicollinearity, and the P-values of both of them are higher than
you might expect.

The obvious way to assess that is to try taking out the squared term:
Faces.2 <- update(Faces.1, . ~ . - I(SHR^2))
drop1(Faces.2, test = "Chisq")

Df AIC LRT Pr(>Chi)
NA 102.9592 NA NA
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MaxGripStrength 1 101.0405 0.0813532 0.7754718
SHR 1 110.2420 9.2828969 0.0023130
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and now you see the strong effect of SHR (that you would have expected because the predictions
changed substantially as SHR changed).

How do predictions from this model look?
new <- datagrid(model = Faces.2, SHR = c(1, 1.2, 1.4, 1.6), MaxGripStrength = c(42, 54))
cbind(predictions(Faces.2, newdata = new)) %>%
select(group, estimate, SHR, MaxGripStrength) %>%
pivot_wider(names_from = group, values_from = estimate)

Re-fitting to get Hessian

SHR MaxGripStrength A B C D
1.0 42 0.8705688 0.0938513 0.0228202 0.0127597
1.0 54 0.8570508 0.1032059 0.0254510 0.0142924
1.2 42 0.5146358 0.2957179 0.1138712 0.0757752
1.2 54 0.4858963 0.3061526 0.1237196 0.0842315
1.4 42 0.1432104 0.2592732 0.2553708 0.3421456
1.4 54 0.1296714 0.2454946 0.2563573 0.3684766
1.6 42 0.0256728 0.0703199 0.1366069 0.7674004
1.6 54 0.0229481 0.0635191 0.1262407 0.7872921
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As we guessed, attractiveness now proceeds in one direction according to these predictions: high
attractiveness at low SHR, low attractiveness at high SHR. That is a much less interesting, and
I think also less reasonable, story than we had before.

One way to think about this further is to plot the predictions, but with the data added. Next
is the model we just fitted, without the squared term. Each man has a different SHR value,
so I can’t easily work out proportions as I did for the coal miners, so I’m plotting each man’s
attractiveness rating and their SHR across the top:
plot_predictions(Faces.2, condition = c("SHR", "group")) +
geom_point(data = Faces, aes(x = SHR, y = 1, colour = Attractive))

Re-fitting to get Hessian
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The purple dots (the men rated D) are mostly on the right, and the red dots (rated A) are sort
of on the left. I don’t think there’s anything in the data to indicate that the red curve should
keep going up as SHR decreases; that’s just an implication of the model.

Here’s the model we fitted first, with the squared term:
plot_predictions(Faces.1, condition = c("SHR", "group")) +
geom_point(data = Faces, aes(x = SHR, y = 1, colour = Attractive))

Re-fitting to get Hessian
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The predictions are not that different (which is probably why the squared term was not signif-
icant). Really, the principal difference is what happens on the left: now, the red curve goes
back down again as SHR decreases (and the other curves level off), so that on this graph, the
maximum probability of being rated an A comes at an SHR of about 1.2. Looking at the points
along the top, I think it fits with the data to have the predicted probability of being rated A
be highest up to an SHR of about 1.3.

In each case, there is a lot of uncertainty about the red curve, which is probably why statistically
we couldn’t distinguish between these two models.

4. 90 males diagnosed with cancer of the larynx (where the vocal cords are) at a Dutch hospital took part in
a study. Cancer cases are classified into one of four stages, numbered 1 through 4, in the column stage
of this dataset. Stage 1 is the least advanced stage of the cancer, and Stage 4 is the most advanced,
which would be expected to be worst. The numbers serve only to identify the stages; the numbers 1
through 4 have no meaning as numbers. The main aim of this study was to investigate the effect of the
stage of cancer on survival times. The researchers also recorded the age of each patient, and the year
of diagnosis (in diagyr, as two digits, the year minus 1900). The time in months from diagnosis until
death, or until the end of the study, was also recorded, along with an indication delta of whether the
patient was alive or dead at that time.

Some of the data are shown in Figure 15.
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(a) [3] What code would I use to create a suitable response variable y for a Cox proportional-hazards
model? This could be either a new column in the dataframe, or a separate variable outside the
dataframe.

My answer:

In the dataframe:
larynx %>% mutate(y = Surv(time, delta == "dead")) -> larynx

or, as a separate variable,
y <- with(larynx, Surv(time, delta == "dead"))

or, if you must:
y <- Surv(larynx$time, larynx$delta == "dead")

(on the last one, you will probably get fed up with writing larynx and the dollar sign twice.
This is why we have with.)

Use Surv (from the survival package); the first input is the time the patient was observed
(the column called time here), and the second input is something that will be TRUE if the event
(here death) happened for the patient. If you make a new column in the dataframe, you should
probably save the result, but I have no problem if you don’t, because the issue is to get the
Surv thing right. Fast ways to lose points included:

• calling the response variable something other than y (calling it mth reveals that you were
copying from your notes without thinking)

• using a variable name other than delta in the second part of Surv
• forgetting that you need a second = between delta and "dead" because you are making

something that has to be true or false
• forgetting the quotes around dead because it is a literal value, not a variable name

If you want to do some pre-calculation, for example to make a variable status that is true or
false, maybe using ifelse, and then feeding that status as is into Surv, be my guest. It isn’t
actually necessary here, but if it will work, it is good.
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(b) [2] The values of y for the first twenty observations are shown in Figure 16. Why do some of them
have a + next to them? How do you know?

My answer:

These are the patients who were still alive at the end of the study. These are the censored
observations: that is to say, the patients for which the event (death) never happened before the
end of the study; these are by convention labelled with a + in survival analysis.

One point for “still alive”, one for some discussion of censoring in this context.

The values of y are given in the same order as the original data I showed you in Figure 15, so
you can go back and check that you were right about them still being alive. Thus the first point
was a bit of a giveaway.

Now that I have graded this, it was perhaps a bit too easy to get two points here. Some
discussion along the lines of the analysis having to include both people who died and people
that were still alive when last seen was enough to get the second point (it was nice if you
included the idea that the censored observations actually mean “a lifetime of at least the value
shown”).

(c) [2] A proportional-hazards model is shown in Figure 17. Why did I include the drop1 output in
addition to the summary output?

My answer:

I am looking to see whether anything can be removed, and stage is categorical, so I need to see
whether I can remove it as a whole, which the drop1 output tells me (it tells me that I cannot
remove it), and the summary output does not (it only tells me how the stages compare to the
baseline stage 1).

There are some clues about the categoricalness of stage: a sentence in the question about how
the stage numbers are labels rather than being meaningful as numbers, and the way stage
appears in the summary output (with three coefficients, for all the stages except the baseline).

There was also a clue in the wording of the question: the way I phrased it, I tried to suggest
that the best answer would say something about what drop1 gives you that summary does not.
There was one point for saying something about assessing significance of explanatory variables,
which a lot of people got; this is sort-of relevant discussion without actually answering the
question.

(d) [2] A second proportional hazards model is shown in Figure 18, and some further analysis is shown
in Figure 19. Why did I need to do the further analysis, and what do you conclude from it?

My answer:

I needed to do the analysis in Figure 19 because I had removed two (more than one) explanatory
variables from the first model. To check whether that was reasonable, I could not use the
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summary or drop1 output from the first model, because that is only applicable to removing one
explanatory variable. So I had to do the anova to compare the fit of the two models.

The two models are not significantly different in fit (P-value 0.39), so we prefer the smaller,
simpler one with just stage in it, the model larynx.2.

An appreciable fraction of that for the two points. I definitely wanted you to recognize what
the two models were that you were comparing, and which one you preferred. The issue here
was not the significance of stage (it was significant in both models) but in whether it was
reasonable to remove both age and diagyr at once (yes, it was reasonable). The output of
model larynx.1 suggested that removing them both would be all right, but to prove that, you
need the anova (because, especially if there is multicollinearity, removing one might make the
other one significant).

Extra: the C32-style approach would have been to remove just the year of diagnosis first (largest
P-value), and then re-fit with stage and age. When I was putting this question together, that’s
what I did (and I found that age was still not significant, so I removed that too). This seemed
a bit involved for an exam question that wasn’t really testing this, so I took them both out and
produced the anova version for you. It’s actually not an ANOVA but a likelihood-ratio test for a
model like this, but the way it works is the same: if the bigger model had fit significantly better
(in the sense here of having a much higher likelihood or much lower deviance), the P-value
would have come out small. It didn’t, so I was justified in tossing age and diagyr both.

Details, for those interested: the likelihood is the probability of observing exactly the data you
did. This will depend on the parameters you are trying to estimate (the coefficients of the
proportional-hazards model in this case). What you do is choose values for those parameters
that maximize the probability of seeing what you saw (the so-called “maximum likelihood
estimators” or MLEs). Cox worked out how to calculate them for this model; in other models
you have seen, things are much simpler. For example, in estimating the mean of a single
normally-distributed population, the MLE of the population mean is the sample mean, and the
MLE of the population SD is the sample SD (more or less). In (simple) regression, the maximum
likelihood estimates of intercept and slope are the same as the least squares estimates, under
the assumption of normally-distributed errors with constant SD. (You probably saw those in
your second course, B27 or similar.)

One really nice thing that comes out of the likelihood theory is that you can compare any
two models where the first one is the second one plus extra stuff. Our models larynx.1 and
larynx.2 are like that, where the extra stuff is age and year of diagnosis. What you do is to
fit each model, estimating the coefficients in it by maximum likelihood, and then compare the
two likelihoods by looking at their ratio. If the likelihood for larynx.1 had been several times
bigger than for larynx.2 (it wasn’t), then we would have known to keep age and diagyr. The
trouble is that likelihoods tend to be very small probabilities (even at their maximum, it is
very unlikely that you would have observed exactly what you did observe), so it is numerically
a much better idea to look at the log of the likelihoods, which will be a very negative number.
There are also good mathematical reasons to look at the log of the likelihood rather than the
likelihood itself. So, looking at the ratio of two likelihoods is equivalent to looking at the
difference of two log-likelihoods (because of rules of logarithms). When you do that, as Figure
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19 shows, what you do is to take the difference in log-likelihoods (in the loglik column), which
is about 0.95, and double it to get 1.90 (the 1.88 in the Chisq column is 1.90 more accurately).
To get a P-value, you look in chi-squared tables; the df are the total df of the things that were
in larynx.1 but not larynx.2 (two quantitative variables, so 2). If you look this one up in
your tables, you’ll get a P-value “bigger than 0.1”, or something like that.

The likelihood ratio test is very general: whenever you are doing statistics you have a probability
model and you can work out the likelihood (in principle at least) for any model you care to
fit. The P-value from a chi-squared distribution is actually an “asymptotic approximation”,
meaning that it works better for larger sample sizes, but it is often very useful and accurate
enough, and there isn’t always any better theory. The proportional-hazards model is one of
those cases where likelihood ratio is about the best you have.

(e) [4] Figure 20 shows some predicted survival curves. What do you conclude from the graph, and
how is this conclusion consistent with the appropriate one of Figures 17 or 18? (Say which one of
these last two Figures you are looking at.)

My answer:

The display of new above the graph shows that we are predicting survival probabilities for the
different stages, and that the strata numbers are the same as the numbers of the stages (which
makes your life easier). We are talking about an undesirable event (death), so the best stage
to be in is the one where survival for longest is most likely (up and to the right). Stage 1 and
Stage 2 are very close, with Stage 1 being slightly better. Stage 3 has worse survival, and Stage
4 the worst of all. Two points.

The predictions that made the graph in Figure 20 were made from the model larynx.2 (see
the survfit in the definition of s above the graph). So we need to look at Figure 18. In
this Figure, look for the Coef numbers in the summary output. These show the effect of being
in different stages on the hazard. The baseline (stage 1) is zero, and the others are relative
to that. The coefficient for stage 2 is only slightly bigger than the baseline, so the hazard of
death is only slightly higher than for stage 1. The coefficient for stage 3 is much bigger (more
positive), and the coefficient for stage 4 is much bigger still, so survival on stage 3 is worse
than for stages 1 and 2, and survival on stage 4 is worse than for stage 3. These are entirely
consistent with the graph. (This is better than talking about P-values, because the P-value
could be small if the hazard rate was significantly higher or lower than the baseline Stage
1.) You can undoubtedly say this more briefly than I just did, but make sure you make the
connection between the numbers in the summary output in Figure 18 and the relative positions
of the estimated survival curves.

It is not really insightful to talk about how all the survival curves are going down over time;
this is something that always happens in survival analysis, because the chance of it taking a
long time for the event to happen is never greater than the chance of it taking a short time.

I realized as I was marking this that it would have been better to split it into two parts: first,
have you interpret Figure 20, and then, in the next part, have you interpret the appropriate
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one of Figures 17 or 18. It is probably better to have each question part ask you one thing (as
opposed to two things, which you then have to check that you answered both of).
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5. After you come out of a swimming pool, your fingers are wrinkled because they are wet. If you have to
do a precision task with a wet object, is it better if your fingers are wrinkled or dry? To find out, 80
participants were observed doing a “transfer task” under various conditions. The task was to pick up
an item with the right thumb and index finger, pass the item through a small hole, grab it with the left
thumb and index finger, then put the item into a box through a hole in the lid. Each participant was
timed, and the time to complete the whole task was recorded. Some of the data are shown in Figure 21.
The columns of interest are:

• Time: total time to complete the task, in seconds.
• Fingers: whether the participant’s fingers were wrinkled or non (not wrinkled)
• Objects: whether the object being handled was wet or dry.

For this question, carry out all tests at 𝛼 = 0.10.

(a) [2] A plot is shown in Figure 22. What is the main thing that you learn from this plot? Explain
briefly.

My answer:

This is an interaction plot (see the code above the graph), so we look at the lines and decide
whether they are parallel. It seems pretty clear that they are not, so we would expect to see
an interaction between Fingers and Objects.

That’s all I needed. If you wanted to be more specific about the comparison of means as well as
(or instead of) the above, that’s fine too; just make sure you get at the likely interaction effect
somehow. For example, “if the object is dry, there is not much difference between wrinkled or
non-wrinkled fingers in the time needed to complete the task, but if the object is wet, wrinkled
fingers complete the task much quicker”. Saying something like this now will help you for part
(d), provided, of course, that the analysis along the way supports this conclusion. (These are
the kind of words you would use in describing simple effects.)

Try to avoid using the word “significant” in this part, because we don’t have P-values for
anything yet, and that is what we need to assess significance in a statistical context.

I am not showing you the grouped boxplot, but if you had that as well, you could judge
whether the non-parallelism was beyond chance, given how much variability there was. But
don’t overthink this one. If you weren’t sure, you could come back to this one after doing the
next part, and see if you can make this part and the next one consistent.

(b) [2] Some analysis is shown in Figure 23. Is the result of this analysis what you were expecting, given
your conclusion from the previous part? Explain (very) briefly, keeping in mind the 𝛼 we are using.

My answer:

The P-value for the interaction term is 0.084, which is less than 𝛼 = 0.10, so at this level, the
interaction term is significant. This agrees with the interaction plot in the previous part, which
also indicated that an interaction was present.

About the briefest answer that will work is “both the aov and the interaction plot indicate that
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there is an interaction, so they agree with each other”.

If you forget and use the standard 𝛼 of 0.05, you will lose something, but if you then say
something like “I expected to see a significant interaction, so I was surprised that it was actually
not significant”, you will get something for being consistent with yourself.

(c) [2] Someone tells you that the P-value for Objects in Figure 23 is the smallest, so you should now
do a Tukey analysis of the types of objects. Do you think they are correct, or not? Explain briefly.

My answer:

No, they are not: you have a significant interaction, so that is the first thing that you should
assess. When you have a significant interaction, that is the finding, and any other significant
terms, even ones with small P-values, do not enter into the interpretation. The next stage is
to understand the interaction (which the next part rather gives away).

That was the answer I was expecting, but because you are smarter than I am, some of you also
realized that you can refute the someone’s analysis by saying that there are only two types of
objects, wet and dry, and we already know they are different (the task is done more quickly
with dry objects than with wet ones), and so there is no need for Tukey for that reason. I wasn’t
anticipating that as an answer, but it also answers the question, if perhaps in a less insightful
way than the first answer, so it also gets two points. I could perhaps have quibbled that you
should not be looking at the test for objects at all until you have looked at the interaction,
but I didn’t.

You could run a Tukey on the interaction: there are only four combinations ($ = 2 ×2$) of
objects and fingers, so it would not be that hard to interpret. But that’s not what the
person was saying to do.

(d) [3] Some more analysis is shown in Figure 24. What precisely does this enable you to conclude about
the effects of Fingers or Objects or their combination? Looking back at Figure 22, summarize
your conclusions clearly.

My answer:

This additional analysis is of simple effects, specifically the simple effects of Fingers when
Objects is held fixed.

The first part of Figure 24 says that if the object is dry, there is no effect of Fingers: the
P-value of 0.863 is nowhere near significant. That is, the mean time to complete the task is not
significantly different when the fingers are wrinkled or not, if the object is dry.

The second part of the Figure says that if the object is wet, there is a significant effect of
Fingers: the P-value of 0.057 is significant, at 𝛼 = 0.10. That is, when the object is wet, it
makes a difference to the mean time to complete the task whether the fingers are wrinkled or
not. To see what kind of difference it makes, go back and look at the interaction plot: when
the object is wet, the task is completed more quickly when the fingers are wrinkled than when
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they are not.

If you did some actual comparisons of means back in part (a), you’ll probably find that this part
confirms what you guessed from looking at the interaction plot. I wanted you to get all the way
to “if the object is wet, the task is completed more quickly when the fingers are wrinkled than
when they are not”, which is why I directed you back to the interaction plot in the question. If
you didn’t say that here, I checked back to see whether you said it in (a); if you did, you have
credit for it here.

Extras:

These data came from a paper entitled “Water-induced finger wrinkles improve handling of wet
objects”, and now you see where that title came from.

It might not be clear to you, in working with simple effects, which explanatory variable you
hold fixed and which one you allow to vary. My thought process here was to imagine that the
objects that come our way are either dry or wet, and this is (I imagine) something out of our
control: the experimenters get to decide whether the object we handle is wet or dry, not us.
With that in mind, we can think of what strategy we might use once we know whether we
are dealing with a wet or a dry object: the one thing we can choose is whether we should wet
our fingers first (so that they are wrinkled) or leave them dry (not wrinkled). The strategy
we should adopt, revealed by our simple effects, is this: if the object is dry, it doesn’t matter
what we do, but if the object is wet, we should handle it with wrinkled fingers. (When we were
working with the engine noise data in class, I said we didn’t really care about engine size, so
we held that fixed and let the filter vary, since the filter effect was of interest to us. This one
is sort of similar.)

I had to stretch a bit to lead you to this conclusion of this question, by making 𝛼 = 0.10
throughout here. If we had stuck with 0.05, we would have come to a different conclusion: the
interaction would not have been significant, so we would have removed it, and then we would
have had no effect of Fingers, but a significant effect of Objects, and the latter would have
led us to the much less interesting conclusion that, overall, wet objects are more difficult to
handle than dry ones (in that it takes longer to complete the task on average if the object is
wet). Having said that, though, the conclusions from the two simple effects were very different,
which suggests that the interaction was worth treating as significant, even though its P-value
was not smaller than 0.05.
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Use this page if you need more space. Be sure to label any answers here with the question and part they
belong to.
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Numbered Figures begin here, in with caption and label

library(MASS)
library(tidyverse)
library(marginaleffects)
library(survival)
library(survminer)

Figure 1: Packages loaded

Glowworm

GlowWorms %>% slice_sample(n = 10)

Lantern Eggs
16.5 159
13.5 68
8.1 62

12.3 142
14.4 27
13.3 113
9.9 63

10.2 41
14.9 99
11.8 114

GlowWorms %>% summarize(n = n(), mean_Lantern = mean(Lantern), mean_Eggs = mean(Eggs))

n mean_Lantern mean_Eggs
26 11.9 78.19231

Figure 2: Glowworms data (some randomly chosen rows), with summary statistics (for whole dataset)
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glow.1 <- lm(Eggs ~ Lantern, data = GlowWorms)
summary(glow.1)

Call:
lm(formula = Eggs ~ Lantern, data = GlowWorms)

Residuals:
Min 1Q Median 3Q Max

-69.50 -23.59 -3.20 22.95 63.33

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -8.977 21.869 -0.410 0.685087
Lantern 7.325 1.757 4.169 0.000343 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 32.71 on 24 degrees of freedom
Multiple R-squared: 0.4201, Adjusted R-squared: 0.3959
F-statistic: 17.38 on 1 and 24 DF, p-value: 0.0003431

Figure 3: Glowworms regression

new <- datagrid(model = glow.1, Lantern = c(5, 12, 19))
cbind(predictions(glow.1, newdata = new)) %>%
select(estimate, conf.low, conf.high, Lantern)

estimate conf.low conf.high Lantern
27.64885 0.768477 54.52923 5
78.92482 66.348540 91.50110 12

130.20079 102.709804 157.69178 19

Figure 4: Glowworms predictions 1

p <- predict(glow.1, new, interval = "p")
cbind(new, p)

Eggs Lantern fit lwr upr
78 5 27.64885 -45.54768 100.8454
78 12 78.92482 10.13605 147.7136
78 19 130.20079 56.75322 203.6484

Figure 5: Glowworms predictions 2, using same new as in previous Figure
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Kinase
heart

mck ha nha
20 2 88
60 13 26

100 30 8
140 30 5
180 21 0
220 19 1
260 18 1
300 13 1
340 19 0
380 15 0
420 7 0
460 8 0
500 35 0

Figure 6: Creatinine kinase data

heart %>% select(ends_with("ha")) %>%
as.matrix() -> response

response

ha nha
[1,] 2 88
[2,] 13 26
[3,] 30 8
[4,] 30 5
[5,] 21 0
[6,] 19 1
[7,] 18 1
[8,] 13 1
[9,] 19 0
[10,] 15 0
[11,] 7 0
[12,] 8 0
[13,] 35 0

Figure 7: Creatinine kinase data: some code and its output
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heart.1 <- glm(response ~ mck, data = heart, family = "binomial")
summary(heart.1)

Call:
glm(formula = response ~ mck, family = "binomial", data = heart)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.028360 0.366977 -8.252 <2e-16 ***
mck 0.035104 0.004081 8.602 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 311.29 on 12 degrees of freedom
Residual deviance: 28.14 on 11 degrees of freedom
AIC: 51.596

Number of Fisher Scoring iterations: 6

Figure 8: Creatinine kinase logistic regression
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new <- tibble(mck = seq(0, 300, 20))
cbind(predictions(heart.1, newdata = new)) %>%
select(estimate, conf.low, conf.high, mck) %>%
ggplot(aes(x = mck, y = estimate, ymin = conf.low, ymax = conf.high)) +
geom_line() + geom_ribbon(alpha = 0.2)
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Figure 9: Creatinine kinase model predictions

new2 <- tibble(mck = c(20, 40, 60, 80))
cbind(predictions(heart.1, newdata = new2, type = "link")) %>%
select(estimate, mck)

estimate mck
-2.3262717 20
-1.6241839 40
-0.9220960 60
-0.2200082 80

Figure 10: Creatinine kinase data: more predictions
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Faces

Faces %>% slice_sample(n = 20)

MaxGripStrength SHR Attractive
51.5 1.464 D
50.5 1.218 A
44.0 1.352 B
46.5 1.363 D
35.0 1.099 B
50.5 1.127 D
55.0 1.315 B
34.0 1.247 B
58.5 1.428 D
47.0 1.342 C
49.0 1.136 A
41.0 1.322 D
44.5 1.333 B
42.5 1.310 D
45.5 1.436 C
49.5 1.284 A
43.5 1.249 A
54.0 1.363 D
58.0 1.349 B
37.0 1.377 C

Figure 11: Attractiveness data (random sample of rows)

Faces.1 <- polr(Attractive ~ MaxGripStrength + SHR + I(SHR^2), data = Faces)

Figure 12: Model for attractiveness data

drop1(Faces.1, test = "Chisq")

Df AIC LRT Pr(>Chi)
NA 102.8388 NA NA

MaxGripStrength 1 100.9271 0.088272 0.7663855
SHR 1 102.4722 1.633377 0.2012366
I(SHR^2) 1 102.9592 2.120328 0.1453554

Figure 13: drop1 output for attractiveness data model
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new <- datagrid(model = Faces.1, SHR = c(1, 1.2, 1.4, 1.6), MaxGripStrength = c(42, 54))
cbind(predictions(Faces.1, newdata = new)) %>%
select(group, estimate, SHR, MaxGripStrength) %>%
pivot_wider(names_from = group, values_from = estimate)

Re-fitting to get Hessian

SHR MaxGripStrength A B C D
1.0 42 0.2037797 0.3097473 0.2532528 0.2332202
1.0 54 0.1952400 0.3049208 0.2569195 0.2429197
1.2 42 0.5097292 0.3011724 0.1194417 0.0696567
1.2 54 0.4963609 0.3062037 0.1242323 0.0732031
1.4 42 0.1388698 0.2605816 0.2749903 0.3255583
1.4 54 0.1325973 0.2540969 0.2758976 0.3374082
1.6 42 0.0009542 0.0029696 0.0081966 0.9878797
1.6 54 0.0009045 0.0028157 0.0077763 0.9885035

Figure 14: Predictions of attractiveness for various values of shoulder-hip ratio and grip strength
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larynx

larynx %>% slice(1:20)

stage time age diagyr delta
stage1 0.6 77 76 dead
stage1 1.3 53 71 dead
stage1 2.4 45 71 dead
stage1 2.5 57 78 alive
stage1 3.2 58 74 dead
stage1 3.2 51 77 alive
stage1 3.3 76 74 dead
stage1 3.3 63 77 alive
stage1 3.5 43 71 dead
stage1 3.5 60 73 dead
stage1 4.0 52 71 dead
stage1 4.0 63 76 dead
stage1 4.3 86 74 dead
stage1 4.5 48 76 alive
stage1 4.5 68 76 alive
stage1 5.3 81 72 dead
stage1 5.5 70 75 alive
stage1 5.9 58 75 alive
stage1 5.9 47 75 alive
stage1 6.0 75 73 dead

Figure 15: Larynx cancer data (some)

[1] 0.6 1.3 2.4 2.5+ 3.2 3.2+ 3.3 3.3+ 3.5 3.5 4.0 4.0 4.3 4.5+ 4.5+
[16] 5.3 5.5+ 5.9+ 5.9+ 6.0

Figure 16: Larynx cancer: some values of y
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larynx.1 <- coxph(y ~ stage + age + diagyr, data = larynx)
summary(larynx.1)

Call:
coxph(formula = y ~ stage + age + diagyr, data = larynx)

n= 90, number of events= 50

coef exp(coef) se(coef) z Pr(>|z|)
stagestage2 0.15164 1.16375 0.46481 0.326 0.7442
stagestage3 0.64473 1.90546 0.35619 1.810 0.0703 .
stagestage4 1.73211 5.65255 0.43596 3.973 7.09e-05 ***
age 0.01869 1.01887 0.01433 1.304 0.1922
diagyr -0.01819 0.98198 0.07646 -0.238 0.8120
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

exp(coef) exp(-coef) lower .95 upper .95
stagestage2 1.164 0.8593 0.4680 2.894
stagestage3 1.905 0.5248 0.9480 3.830
stagestage4 5.653 0.1769 2.4052 13.284
age 1.019 0.9815 0.9906 1.048
diagyr 0.982 1.0184 0.8453 1.141

Concordance= 0.674 (se = 0.039 )
Likelihood ratio test= 18.37 on 5 df, p=0.003
Wald test = 21.2 on 5 df, p=7e-04
Score (logrank) test = 24.84 on 5 df, p=1e-04
drop1(larynx.1, test = "Chisq")

Df AIC LRT Pr(>Chi)
NA 385.3583 NA NA

stage 3 394.8735 15.515268 0.0014253
age 1 385.0995 1.741195 0.1869875
diagyr 1 383.4147 0.056456 0.8121876

Figure 17: Larynx cancer: Cox model 1
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larynx.2 <- coxph(y ~ stage, data = larynx)
summary(larynx.2)

Call:
coxph(formula = y ~ stage, data = larynx)

n= 90, number of events= 50

coef exp(coef) se(coef) z Pr(>|z|)
stagestage2 0.06481 1.06696 0.45843 0.141 0.8876
stagestage3 0.61481 1.84930 0.35519 1.731 0.0835 .
stagestage4 1.73490 5.66838 0.41939 4.137 3.52e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

exp(coef) exp(-coef) lower .95 upper .95
stagestage2 1.067 0.9372 0.4344 2.62
stagestage3 1.849 0.5407 0.9219 3.71
stagestage4 5.668 0.1764 2.4916 12.90

Concordance= 0.668 (se = 0.037 )
Likelihood ratio test= 16.49 on 3 df, p=9e-04
Wald test = 19.24 on 3 df, p=2e-04
Score (logrank) test = 22.88 on 3 df, p=4e-05
drop1(larynx.2, test = "Chisq")

Df AIC LRT Pr(>Chi)
NA 383.2416 NA NA

stage 3 393.7270 16.48538 0.0009016

Figure 18: Larynx cancer: Cox model 2

anova(larynx.2, larynx.1)

loglik Chisq Df Pr(>|Chi|)
-188.6208 NA NA NA
-187.6791 1.883308 2 0.3899823

Figure 19: Larynx cancer: further analysis



STAD29 Midterm Exam Figures

larynx %>% count(stage) -> new
new

stage n
stage1 33
stage2 17
stage3 27
stage4 13

s <- survfit(larynx.2, new, data = larynx)
ggsurvplot(s, conf.int = FALSE)
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Figure 20: Larynx cancer: predicted survival curves
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Wrinkle
Wrinkle

Time Fingers Objects
106 non dry
113 non dry
94 non dry
96 non dry
93 non dry

123 non dry
76 non dry
92 non dry
87 non dry
79 non dry
82 non dry

104 non dry
73 non dry
95 non dry
77 non dry
92 non dry
97 non dry
79 non dry

120 non dry
88 non dry

139 non wet
138 non wet
136 non wet
101 non wet
108 non wet
143 non wet
88 non wet

109 non wet
99 non wet
93 non wet
96 non wet

156 non wet
98 non wet

116 non wet
102 non wet
117 non wet
105 non wet
93 non wet

198 non wet
123 non wet
107 wrinkled dry
97 wrinkled dry

117 wrinkled dry
95 wrinkled dry

104 wrinkled dry
108 wrinkled dry
83 wrinkled dry
83 wrinkled dry

106 wrinkled dry
72 wrinkled dry

101 wrinkled dry
116 wrinkled dry
75 wrinkled dry
86 wrinkled dry
74 wrinkled dry
83 wrinkled dry
92 wrinkled dry
73 wrinkled dry

129 wrinkled dry
82 wrinkled dry

118 wrinkled wet
106 wrinkled wet
132 wrinkled wet
92 wrinkled wet

109 wrinkled wet
115 wrinkled wet
86 wrinkled wet
89 wrinkled wet

108 wrinkled wet
85 wrinkled wet

106 wrinkled wet
135 wrinkled wet
84 wrinkled wet
93 wrinkled wet
83 wrinkled wet
88 wrinkled wet
95 wrinkled wet
78 wrinkled wet

160 wrinkled wet
95 wrinkled wet

Figure 21: Wrinkled fingers data
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Wrinkle %>%
group_by(Fingers, Objects) %>%
summarize(mean_time = mean(Time)) -> Wrinkle_means

`summarise()` has grouped output by 'Fingers'. You can override using the
`.groups` argument.
Wrinkle_means

Fingers Objects mean_time
non dry 93.30
non wet 117.90
wrinkled dry 94.15
wrinkled wet 102.85

ggplot(Wrinkle_means, aes(x = Objects, y = mean_time, colour = Fingers, group = Fingers)) +
geom_point() + geom_line()
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Figure 22: Wrinkled fingers plot
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Wrinkle.1 <- aov(Time ~ Fingers * Objects, data = Wrinkle)
summary(Wrinkle.1)

Df Sum Sq Mean Sq F value Pr(>F)
Fingers 1 1008 1008 2.447 0.121939
Objects 1 5544 5544 13.454 0.000451 ***
Fingers:Objects 1 1264 1264 3.067 0.083912 .
Residuals 76 31319 412
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Figure 23: Wrinkled fingers analysis

Wrinkle %>%
filter(Objects == "dry") -> drys

drys.1 <- aov(Time ~ Fingers, data = drys)
summary(drys.1)

Df Sum Sq Mean Sq F value Pr(>F)
Fingers 1 7 7.23 0.03 0.863
Residuals 38 9035 237.76
Wrinkle %>%
filter(Objects == "wet") -> wets

wets.1 <- aov(Time ~ Fingers, data = wets)
summary(wets.1)

Df Sum Sq Mean Sq F value Pr(>F)
Fingers 1 2265 2265.0 3.862 0.0567 .
Residuals 38 22284 586.4
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Figure 24: Wrinkled fingers analysis continued
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