Analysis of Covariance

Analysis of covariance

- ANOVA: explanatory variables categorical (divide data into groups)
- traditionally, analysis of covariance has categorical x's plus one numerical x ("covariate") to be adjusted for.
- Im handles this too.
- Simple example: two treatments (drugs) (a and b), with before and after scores.
- Does knowing before score and/or treatment help to predict after score?
- Is after score different by treatment/before score?

Data

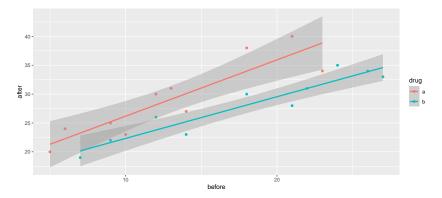
Treatment, before, after:

- a 5 20 a 10 23 a 12 30 a 9 25 a 23 34 a 21 40 a 14 27 a 18 38 a 6 24 a 13 31 b 7 19 b 12 26 b 27 33 b 24 35 b 18 30 b 22 31
- b 26 34

Packages

library(tidyverse)
library(broom)
library(marginaleffects)

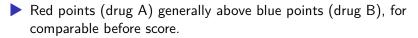
the last of these for predictions.


Read in data

url <- "http://ritsokiguess.site/datafiles/ancova.txt"
prepost <- read_delim(url, " ")
prepost</pre>

# 4	A tibbl	.e: 20 3	с З
	drug	before	after
	< chr >	<dbl></dbl>	<dbl></dbl>
1	a	5	20
2	a	10	23
3	a	12	30
4	a	9	25
5	a	23	34
6	a	21	40
7	a	14	27
8	a	18	38
9	a	6	24
10	a	13	31
11	b	7	19
10	1-	10	0.0

Making a plot


ggplot(prepost, aes(x = before, y = after, colour = drug))
geom_point() + geom_smooth(method = "lm")

Comments

As before score goes up, after score goes up.

Suggests before score effect and drug effect.

The means

```
prepost %>%
group_by(drug) %>%
summarize(
    before_mean = mean(before),
    after_mean = mean(after)
)
```


- Mean "before" score much higher for treatment B.
- Greater improvement on treatment A.

```
Testing for interaction
    prepost.1 <- lm(after ~ before * drug, data = prepost)
    anova(prepost.1)</pre>
```

Analysis of Variance Table

```
Response: after

Df Sum Sq Mean Sq F value Pr(>F)

before 1 430.92 430.92 62.6894 6.34e-07 ***

drug 1 115.31 115.31 16.7743 0.0008442 ***

before:drug 1 12.34 12.34 1.7948 0.1990662

Residuals 16 109.98 6.87

----

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '

summary(prepost.1)
```

```
Call:
lm(formula = after ~ before * drug, data = prepost)
```

Predictions

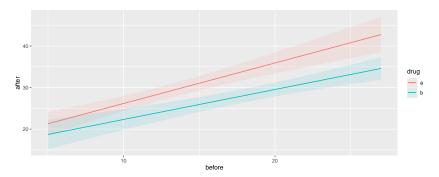
Set up values to predict for:

summary(prepost)

drug		before		after	
Length	n:20	Min.	: 5.00	Min.	:19.00
Class	:character	1st Qu.	: 9.75	1st Qu.	:23.75
Mode	:character	Median	:14.00	Median	:29.00
		Mean	:15.55	Mean	:28.65
		3rd Qu.	:21.25	3rd Qu.	:33.25
		Max.	:27.00	Max.	:40.00
<pre>new <- datagrid(before = c(9.75, 14, 21.25),</pre>					
	drug	g = c("a	a", "b"),	model =	<pre>prepost.1</pre>
new					

before	drug	rowid
--------	------	-------

- 1 9.75 a 1
- 2 9.75 b 2
- 3 14.00 a 3


and then

cbind(predictions(prepost.1, newdata = new)) %>%
 select(drug, before, estimate, conf.low, conf.high)

	drug	before	estimate	conf.low	conf.high
1	a	9.75	25.93250	24.05059	27.81442
2	b	9.75	22.14565	19.58681	24.70450
3	a	14.00	30.07784	28.43296	31.72271
4	b	14.00	25.21304	23.32649	27.09959
5	a	21.25	37.14929	34.32557	39.97300
6	b	21.25	30.44565	28.64373	32.24758

Predictions (with interaction included), plotted

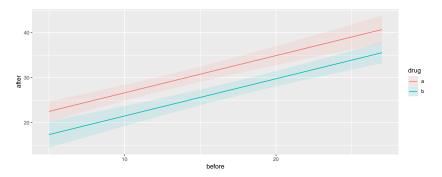
plot_predictions(model = prepost.1, condition = c("before"

Lines almost parallel, but not quite.

```
Taking out interaction
    prepost.2 <- update(prepost.1, . ~ . - before:drug)
    summary(prepost.2)</pre>
```

```
Call:
lm(formula = after ~ before + drug, data = prepost)
Residuals:
   Min
         10 Median 30
                                 Max
-3.6348 -2.5099 -0.2038 1.8871 4.7453
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 18.3600 1.5115 12.147 8.35e-10 ***
before
           0.8275 0.0955 8.665 1.21e-07 ***
drugb -5.1547 1.2876 -4.003 0.000921 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 2.682 on 17 degrees of freedom Multiple R-squared: 0.817, Adjusted R-squared: 0.7955


Predictions

cbind(predictions(prepost.2, newdata = new)) %>%
 select(drug, before, estimate)

	drug	before	estimate
1	a	9.75	26.42794
2	b	9.75	21.27328
3	a	14.00	29.94473
4	b	14.00	24.79007
5	a	21.25	35.94397
6	b	21.25	30.78931

Plot of predicted values

This time the lines are *exactly* parallel. No-interaction model forces them to have the same slope.

Different look at model output

anova(prepost.2) tests for significant effect of before score and of drug, but doesn't help with interpretation.

summary(prepost.2) views as regression with slopes: summary(prepost.2)

```
Call:
lm(formula = after ~ before + drug, data = prepost)
Residuals:
   Min
       10 Median
                          30
                                 Max
-3.6348 -2.5099 -0.2038 1.8871 4.7453
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 18.3600 1.5115 12.147 8.35e-10 ***
before
        0.8275 0.0955 8.665 1.21e-07 ***
     -5.1547 1.2876 -4.003 0.000921 ***
drugb
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 2.682 on 17 degrees of freedom Multiple R-squared: 0.817, Adjusted R-squared: 0.7955 F-statistic: 37.96 on 2 and 17 DF - n-value: 5.372e-07

Understanding those slopes tidy(prepost.2)

#	A tibble: 3	x 5			
	term	estimate	<pre>std.error</pre>	statistic	p.value
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	(Intercept)	18.4	1.51	12.1	8.35e-10
2	before	0.827	0.0955	8.66	1.21e- 7
3	drugb	-5.15	1.29	-4.00	9.21e- 4

before ordinary numerical variable; drug categorical.

- Im uses first category druga as baseline.
- Intercept is prediction of after score for before score 0 and drug A.
- before slope is predicted change in after score when before score increases by 1 (usual slope)
- Slope for drugb is *change* in predicted after score for being on drug B rather than drug A. Same for *any* before score (no interaction).

Summary

- ANCOVA model: fits different regression line for each group, predicting response from covariate.
- ANCOVA model with interaction between factor and covariate allows different slopes for each line.
- Sometimes those lines can cross over!
- If interaction not significant, take out. Lines then parallel.
- With parallel lines, groups have consistent effect regardless of value of covariate.