Case study: asphalt

The asphalt data

- 31 asphalt pavements prepared under different conditions. How does quality of pavement depend on these?
- Variables:
 - pct.a.surf Percentage of asphalt in surface layer
 - pct.a.base Percentage of asphalt in base layer
 - fines Percentage of fines in surface layer
 - voids Percentage of voids in surface layer
 - rut.depth Change in rut depth per million vehicle passes
 - viscosity Viscosity of asphalt
 - run 2 data collection periods: 1 for run 1, 0 for run 2.
- rut.depth response. Depends on other variables, how?

Packages for this section

```
library(MASS)
library(tidyverse)
library(broom)
library(leaps)
```

Make sure to load MASS before tidyverse (for annoying technical reasons).

Getting set up

my_url <- "http://ritsokiguess.site/datafiles/asphalt.txt" asphalt <- read_delim(my_url, " ")</pre>

Quantitative variables with one response: multiple regression.
 Some issues here that don't come up in "simple" regression; handle as we go. (STAB27/STAC67 ideas.)

The data (some)

asphalt

# .	A tibble: 3	1 x 7					
	pct.a.surf	pct.a.base	fines	voids	rut.depth	viscosity	
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<
1	4.68	4.87	8.4	4.92	6.75	2.8	
2	5.19	4.5	6.5	4.56	13	1.4	
3	4.82	4.73	7.9	5.32	14.8	1.4	
4	4.85	4.76	8.3	4.86	12.6	3.3	
5	4.86	4.95	8.4	3.78	8.25	1.7	
6	5.16	4.45	7.4	4.40	10.7	2.9	
7	4.82	5.05	6.8	4.87	7.28	3.7	
8	4.86	4.7	8.6	4.83	12.7	1.7	
9	4.78	4.84	6.7	4.86	12.6	0.92	
10	5.16	4.76	7.7	4.03	20.6	0.68	

i 21 more rows

Plotting response "rut depth" against everything else

Same idea as for plotting separate predictions on one plot:

```
asphalt %>%
  pivot_longer(
    -rut.depth,
    names_to="xname", values_to="x"
    ) %>%
    ggplot(aes(x = x, y = rut.depth)) + geom_point() +
    facet_wrap(~xname, scales = "free") -> g
```

"collect all the x-variables together into one column called x, with another column xname saying which x they were, then plot these x's against rut.depth, a separate facet for each x-variable."

I saved this graph to plot later (on the next page).

The plot

g

Interpreting the plots

- One plot of rut depth against each of the six other variables.
- Get rough idea of what's going on.
- Trends mostly weak.
- viscosity has strong but non-linear trend.
- run has effect but variability bigger when run is 1.
- Weak but downward trend for voids.
- Non-linearity of rut.depth-viscosity relationship should concern us.

Log of viscosity: more nearly linear?

```
Take this back to asphalt engineer: suggests log of viscosity:
```

ggplot(asphalt, aes(y = rut.depth, x = log(viscosity))) +
geom_point() + geom_smooth(se = F) -> g

(plot overleaf)

Rut depth against log-viscosity

Comments and next steps

- Not very linear, but better than before.
- In multiple regression, hard to guess which x's affect response. So typically start by predicting from everything else.
- Model formula has response on left, squiggle, explanatories on right joined by plusses:

```
rut.1 <- lm(rut.depth ~ pct.a.surf + pct.a.base + fines +
voids + log(viscosity) + run, data = asphalt)
summary(rut.1)</pre>
```

Residuals: Min 1Q Median 3Q Max -4.1211 -1.9075 -0.7175 1.6382 9.5947

Regression output: summary(rut.1) or:

glance(rut.1)

```
# A tibble: 7 x 5
```

	term	estimate	std.error	statistic	p.value
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	(Intercept)	-13.0	26.2	-0.496	0.625
2	pct.a.surf	3.97	2.50	1.59	0.125
3	pct.a.base	1.26	3.97	0.318	0.753
4	fines	0.116	1.01	0.115	0.909
5	voids	0.589	1.32	0.445	0.660
6	<pre>log(viscosity)</pre>	-3.15	0.919	-3.43	0.00220
7	run	-1.97	3.65	-0.539	0.595

Comments

- R-squared 81%, not so bad.
- P-value in glance asserts that something helping to predict rut.depth.
- Table of coefficients says log(viscosity).
- But confused by clearly non-significant variables: remove those to get clearer picture of what is helpful.

Before we do anything, look at residual plots:

- (a) of residuals against fitted values (as usual)
 - (b) of residuals against each explanatory.
- Problem fixes:
 - with (a): fix response variable;
 - with some plate in (b), fix these explanatory veriables

Plot fitted values against residuals

ggplot(rut.1, aes(x = .fitted, y = .resid)) + geom_point()

Normal quantile plot of residuals

ggplot(rut.1, aes(sample = .resid)) + stat_qq() + stat_qq_

Plotting residuals against x variables

- Problem here is that residuals are in the fitted model, and the observed x-values are in the original data frame asphalt.
- Package broom contains a function augment that combines these two together so that they can later be plotted: start with a model first, and then augment with a data frame:

```
rut.1 %>% augment(asphalt) -> rut.1a
```

What does rut.1a contain?

names(rut.1a)

[1] "pct.a.surf" "pct.a.base" "fines" "voids" "points"[6] "viscosity" "run" ".fitted" ".resid"[11] ".sigma" ".cooksd" ".std.resid"

- all the stuff in original data frame, plus:
- quantities from regression (starting with a dot)

Plotting residuals against x-variables

```
rut.1a %>%
mutate(log_vis=log(viscosity)) %>%
pivot_longer(
    c(pct.a.surf:voids, run, log_vis),
    names_to="xname", values_to="x"
    ) %>%
ggplot(aes(x = x, y = .resid)) +
geom_point() + facet_wrap(~xname, scales = "free") -> g
```

The plot

g

Comments

- There is serious curve in plot of residuals vs. fitted values. Suggests a transformation of y.
- The residuals-vs-x's plots don't show any serious trends. Worst probably that potential curve against log-viscosity.
- Also, large positive residual, 10, that shows up on all plots. Perhaps transformation of y will help with this too.
- lf residual-fitted plot OK, but some residual-x plots not, try transforming those x's, eg. by adding x^2 to help with curve.

Which transformation?

- Best way: consult with person who brought you the data. Can't do that here!
- No idea what transformation would be good.
- Let data choose: "Box-Cox transformation".
- Scale is that of "ladder of powers": power transformation, but 0 is log.

Running Box-Cox

From package MASS:

boxcox(rut.depth ~ pct.a.surf + pct.a.base + fines + voids log(viscosity) + run, data = asphalt)

Comments on Box-Cox plot

- \triangleright λ represents power to transform y with.
- Best single choice of transformation parameter λ is peak of curve, close to 0.
- Vertical dotted lines give CI for λ , about (-0.05, 0.2).
- $\triangleright \lambda = 0$ means "log".
- Narrowness of confidence interval mean that these not supported by data:
 - No transformation $(\lambda = 1)$
 - Square root ($\lambda = 0.5$)
 - Reciprocal $(\lambda = -1)$.

Relationships with explanatories

As before: plot response (now log(rut.depth)) against other explanatory variables, all in one shot:

```
asphalt %>%
mutate(log_vis=log(viscosity)) %>%
pivot_longer(
    c(pct.a.surf:voids, run, log_vis),
    names_to="xname", values_to="x"
    ) %>%
ggplot(aes(y = log(rut.depth), x = x)) + geom_point() +
facet_wrap(~xname, scales = "free") -> g3
```

The new plots

g3

Modelling with transformed response

- These trends look pretty straight, especially with log.viscosity.
- Values of log.rut.depth for each run have same spread.
- Other trends weak, but are straight if they exist.
- Start modelling from the beginning again.
- Model log.rut.depth in terms of everything else, see what can be removed:

rut.2 <- lm(log(rut.depth) ~ pct.a.surf + pct.a.base +
fines + voids + log(viscosity) + run, data = asphalt)</pre>

use tidy from broom to display just the coefficients.

Output tidy(rut.2)

#	A tibble: 7 x	5						
	term	estimate	std.error	statistic	p.value			
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>			
1	(Intercept)	-1.57	2.44	-0.646	0.525			
2	pct.a.surf	0.584	0.232	2.52	0.0190			
3	pct.a.base	-0.103	0.369	-0.280	0.782			
4	fines	0.0978	0.0941	1.04	0.309			
5	voids	0.199	0.123	1.62	0.119			
6	log(viscosity)	-0.558	0.0854	-6.53	0.00000945			
7	run	0.340	0.339	1.00	0.326			
<pre>summary(rut.2)</pre>								

```
Call:
```

```
lm(formula = log(rut.depth) ~ pct.a.surf + pct.a.base + fin
voids + log(viscosity) + run, data = asphalt)
```

Taking out everything non-significant

Try: remove everything but pct.a.surf and log.viscosity:

rut.3 <- lm(log(rut.depth) ~ pct.a.surf + log(viscosity), data = asphal
summary(rut.3)</pre>

```
Call:
lm(formula = log(rut.depth) ~ pct.a.surf + log(viscosity), data = aspha
Residuals:
              10 Median
                              30
    Min
                                      Max
-0.61938 -0.21361 0.06635 0.14932 0.63012
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.90014
                        1.08059 0.833 0.4119
pct.a.surf 0.39115 0.21879 1.788 0.0846.
log(viscosity) -0.61856 0.02713 -22.797 <2e-16 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.3208 on 28 degrees of freedom Multiple R-squared: 0.9509, Adjusted R-squared: 0.9474

Find the largest P-value by eye:

tidy(rut.2)

A tibble: 7 x 5

	term	estimate	${\tt std.error}$	statistic	p.value
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	(Intercept)	-1.57	2.44	-0.646	0.525
2	pct.a.surf	0.584	0.232	2.52	0.0190
3	pct.a.base	-0.103	0.369	-0.280	0.782
4	fines	0.0978	0.0941	1.04	0.309
5	voids	0.199	0.123	1.62	0.119
6	log(viscosity)	-0.558	0.0854	-6.53	0.00000945
7	run	0.340	0.339	1.00	0.326

- Largest P-value is 0.78 for pct.a.base, not significant.
- So remove this first, re-fit and re-assess.
- Or, as over.

Get the computer to find the largest P-value for you

Output from tidy is itself a data frame, thus: tidy(rut.2) %>% arrange(p.value)

A tibble: 7 x 5

	term	estimate	${\tt std.error}$	statistic	p.value
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	log(viscosity)	-0.558	0.0854	-6.53	0.00000945
2	pct.a.surf	0.584	0.232	2.52	0.0190
3	voids	0.199	0.123	1.62	0.119
4	fines	0.0978	0.0941	1.04	0.309
5	run	0.340	0.339	1.00	0.326
6	(Intercept)	-1.57	2.44	-0.646	0.525
7	pct.a.base	-0.103	0.369	-0.280	0.782

Largest P-value at the bottom.

Take out pct.a.base

Copy and paste the lm code and remove what you're removing:

```
rut.4 <- lm(log(rut.depth) ~ pct.a.surf + fines + voids +</pre>
              log(viscosity) + run, data = asphalt)
tidy(rut.4) %>% arrange(p.value) %>% dplyr::select(term, p.value
```

#	A tibble: 6 x 2	2
	term	p.value
	<chr></chr>	<dbl></dbl>
1	<pre>log(viscosity)</pre>	0.00000448
2	pct.a.surf	0.0143
3	voids	0.109
4	(Intercept)	0.208
5	run	0.279
6	fines	0.316

fines is next to go, P-value 0.32.

"Update"

Another way to do the same thing:

rut.4 <- update(rut.2, . ~ . - pct.a.base)
tidy(rut.4) %>% arrange(p.value)

Ŧ	A tibble: 6 X 3	5			
	term	estimate	<pre>std.error</pre>	statistic	p.value
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	<pre>log(viscosity)</pre>	-0.552	0.0818	-6.75	0.00000448
2	pct.a.surf	0.593	0.225	2.63	0.0143
3	voids	0.200	0.121	1.66	0.109
4	(Intercept)	-2.08	1.61	-1.29	0.208
5	run	0.360	0.325	1.11	0.279
6	fines	0.0889	0.0870	1.02	0.316

Again, fines is the one to go. (Output identical as it should be.)

Take out fines:

rut.5 <- update(rut.4, . ~ . - fines)
tidy(rut.5) %>% arrange(p.value) %>% dplyr::select(term, p

Can't take out intercept, so run, with P-value 0.36, goes next.

Take out run:

rut.6 <- update(rut.5, . ~ . - run) tidy(rut.6) %>% arrange(p.value) %>% dplyr::select(term, p

Again, can't take out intercept, so largest P-value is for voids, 0.044. But this is significant, so we shouldn't remove voids.

Comments

Here we stop: pct.a.surf, voids and log.viscosity would all make fit significantly worse if removed. So they stay.
 Different final result from taking things out one at a time (top), than by taking out 4 at once (bottom):

summary(rut.6)

```
Call:
lm(formula = log(rut.depth) ~ pct.a.surf + voids + log(vis)
    data = asphalt)
Residuals:
     Min
               10 Median
                                 30
                                         Max
-0.53548 -0.20181 -0.01702 0.16748 0.54707
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)
               -1.02079
                           1.36430 -0.748
                                             0.4608
```

Comments on variable selection

- Best way to decide which x's belong: expert knowledge: which of them should be important.
- Best automatic method: what we did, "backward selection".
- Do not learn about "stepwise regression"! eg. here
- R has function step that does backward selection, like this:

step(rut.2, direction = "backward", test = "F")

Gets same answer as we did (by removing least significant x).

- Removing non-significant x's may remove interesting ones whose P-values happened not to reach 0.05. Consider using less stringent cutoff like 0.20 or even bigger.
- Can also fit all possible regressions, as over (may need to do install.packages("leaps") first).

All possible regressions (output over)

```
Uses package leaps:
```

The output

d %>% rownames_to_column("model") %>% arrange(desc(rsq))

		model	rsq	<pre>pct.a.surf</pre>	pct.a.base	fines	voids	log.viscosity.	run
1	6	(1)	0.9609642	*	*	*	*	*	*
2	5	(1)	0.9608365	*		*	*	*	*
3	5	(2)	0.9593265	*	*	*	*	*	
4	4	(1)	0.9591996	*			*	*	*
5	4	(2)	0.9589206	*		*	*	*	
6	3	(1)	0.9578631	*			*	*	
7	3	(2)	0.9534561	*		*		*	
8	2	(1)	0.9508647	*				*	
9	2	(2)	0.9479541				*	*	
10	1	(1)	0.9452562					*	
11	1	(2)	0.8624107						*

Comments

- Problem: even adding a worthless x increases R-squared. So try for line where R-squared stops increasing "too much", eg. top line (just log.viscosity), first 3-variable line (backwards-elimination model). Hard to judge.
- One solution (STAC67): adjusted R-squared, where adding worthless variable makes it go down.
- data.frame rather than tibble because there are several columns in outmat.

All possible regressions, adjusted R-squared

```
with(s, data.frame(adjr2, outmat)) %>%
  rownames_to_column("model") %>%
  arrange(desc(adjr2))
```

		model	adjr2	<pre>pct.a.surf</pre>	pct.a.base	fines	voids	<pre>log.viscosity.</pre>	run
1	3	(1)	0.9531812	*			*	*	
2	5	(1)	0.9530038	*		*	*	*	*
3	4	(1)	0.9529226	*			*	*	*
4	4	(2)	0.9526007	*		*	*	*	
5	6	(1)	0.9512052	*	*	*	*	*	*
6	5	(2)	0.9511918	*	*	*	*	*	
7	3	(2)	0.9482845	*		*		*	
8	2	(1)	0.9473550	*				*	
9	2	(2)	0.9442365				*	*	
10	1	(1)	0.9433685					*	
11	1	(2)	0.8576662						*

Revisiting the best model

Best model was our rut.6:

tidy(rut.6)

A tibble: 4 x 5

	term	estimate	${\tt std.error}$	${\tt statistic}$	p.value
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	(Intercept)	-1.02	1.36	-0.748	4.61e- 1
2	pct.a.surf	0.555	0.220	2.52	1.80e- 2
3	voids	0.245	0.116	2.12	4.36e- 2
4	log(viscosity)	-0.646	0.0288	-22.5	5.29e-19

Revisiting (2)

- Regression slopes say that rut depth increases as log-viscosity decreases, pct.a.surf increases and voids increases. This more or less checks out with out scatterplots against log.viscosity.
- We should check residual plots again, though previous scatterplots say it's unlikely that there will be a problem:

g <- ggplot(rut.6, aes(y = .resid, x = .fitted)) +
geom_point()</pre>

Residuals against fitted values

and lateration of a sector and lateration of the sector and lateration of

Plotting residuals against x's

Do our trick again to put them all on one plot:

```
augment(rut.6, asphalt) %>%
mutate(log_vis=log(viscosity)) %>%
pivot_longer(
    c(pct.a.surf:voids, run, log_vis),
    names_to="xname", values_to="x",
    ) %>%
ggplot(aes(y = .resid, x = x)) + geom_point() +
facet_wrap(~xname, scales = "free") -> g2
```

Residuals against the x's

g2

Comments

- None of the plots show any sort of pattern. The points all look random on each plot.
- On the plot of fitted values (and on the one of log.viscosity), the points seem to form a "left half" and a "right half" with a gap in the middle. This is not a concern.
- One of the pct.a.surf values is low outlier (4), shows up top left of that plot.
- Only two possible values of run; the points in each group look randomly scattered around 0, with equal spreads.
- Residuals seem to go above zero further than below, suggesting a mild non-normality, but not enough to be a problem.

Variable-selection strategies

- Expert knowledge.
- Backward elimination.
- All possible regressions.
- Taking a variety of models to experts and asking their opinion.
- Use a looser cutoff to eliminate variables in backward elimination (eg. only if P-value greater than 0.20).
- If goal is prediction, eliminating worthless variables less important.
- If goal is understanding, want to eliminate worthless variables where possible.
- Results of variable selection not always reproducible, so caution advised.