Case study: asphalt

The asphalt data

- 31 asphalt pavements prepared under different conditions. How does quality of pavement depend on these?
- Variables:
p pct.a.surf Percentage of asphalt in surface layer
p pct.a.base Percentage of asphalt in base layer
- fines Percentage of fines in surface layer
- voids Percentage of voids in surface layer
rut.depth Change in rut depth per million vehicle passes
- viscosity Viscosity of asphalt
- run 2 data collection periods: 1 for run 1, 0 for run 2.
rut.depth response. Depends on other variables, how?

Packages for this section

```
library(MASS)
library(tidyverse)
library(broom)
library(leaps)
```

Make sure to load MASS before tidyverse (for annoying technical reasons).

Getting set up

```
my_url <- "http://ritsokiguess.site/datafiles/asphalt.txt"
asphalt <- read_delim(my_url, " ")
```

\rightarrow Quantitative variables with one response: multiple regression.

- Some issues here that don't come up in "simple" regression; handle as we go. (STAB27/STAC67 ideas.)

The data (some)

asphalt

\# A tibble: 31 x 7 pct.a.surf pct.a.base fines voids rut.depth viscosity <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <c

1	4.68	4.87	8.4	4.92	6.75	2.8
2	5.19	4.5	6.5	4.56	13	1.4
3	4.82	4.73	7.9	5.32	14.8	1.4
4	4.85	4.76	8.3	4.86	12.6	3.3
5	4.86	4.95	8.4	3.78	8.25	1.7
6	5.16	4.45	7.4	4.40	10.7	2.9
7	4.82	5.05	6.8	4.87	7.28	3.7
8	4.86	4.7	8.6	4.83	12.7	1.7
9	4.78	4.84	6.7	4.86	12.6	0.92
10	5.16	4.76	7.7	4.03	20.6	0.68

\# i 21 more rows

Plotting response "rut depth" against everything else

Same idea as for plotting separate predictions on one plot:

```
asphalt %>%
    pivot_longer(
    -rut.depth,
    names_to="xname", values_to="x"
    ) %>%
    ggplot(aes(x = x, y = rut.depth)) + geom_point() +
    facet_wrap(~xname, scales = "free") -> g
```

"collect all the x-variables together into one column called x, with another column xname saying which x they were, then plot these x's against rut.depth, a separate facet for each x-variable."

I saved this graph to plot later (on the next page).

The plot

g

Interpreting the plots

- One plot of rut depth against each of the six other variables.
- Get rough idea of what's going on.
- Trends mostly weak.
viscosity has strong but non-linear trend.
run has effect but variability bigger when run is 1 .
Weak but downward trend for voids.
Non-linearity of rut.depth-viscosity relationship should concern us.

Log of viscosity: more nearly linear?

- Take this back to asphalt engineer: suggests log of viscosity:

```
ggplot(asphalt, aes(y = rut.depth, x = log(viscosity))) +
    geom_point() + geom_smooth(se = F) -> g
```

(plot overleaf)

Rut depth against log-viscosity

Comments and next steps

- Not very linear, but better than before.
- In multiple regression, hard to guess which x's affect response. So typically start by predicting from everything else.
- Model formula has response on left, squiggle, explanatories on right joined by plusses:

```
rut.1 <- lm(rut.depth ~ pct.a.surf + pct.a.base + fines +
    voids + log(viscosity) + run, data = asphalt)
summary(rut.1)
```

Call:

```
lm(formula = rut.depth ~ pct.a.surf + pct.a.base + fines +
    \(\log (v i s c o s i t y)+r u n, ~ d a t a=~ a s p h a l t) ~\)
```

Residuals:

Min	1Q	Median	3Q	Max
-4.1211	-1.9075	-0.7175	1.6382	9.5947

Regression output: summary (rut.1) or:

```
glance(rut.1)
# A tibble: 1 x 12
    r.squared adj.r.squared sigma statistic p.value df logLik AI
        <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl
10.806 0.758 3.32 16.6 0.000000174 6 -77.3 171
# i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
tidy(rut.1)
# A tibble: 7 x 5
    term estimate std.error statistic p.value
    <chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) -13.0 26.2 -0.496 0.625
2 pct.a.surf 3.97 2.50 1.59 0.125
3 pct.a.base 1.26 3.97 0.318 0.753
fines
5 voids
    0.589 1.32 0.445 0.660
6 log(viscosity) -3.15 0.919 -3.43 0.00220
7 run -1.97 3.65 -0.539 0.595
```


Comments

- R-squared 81%, not so bad.
- P-value in glance asserts that something helping to predict rut.depth.
- Table of coefficients says \log (viscosity).
- But confused by clearly non-significant variables: remove those to get clearer picture of what is helpful.

Before we do anything, look at residual plots:

(a) of residuals against fitted values (as usual)

- (b) of residuals against each explanatory.
- Problem fixes:
with (a): fix response variable;

Plot fitted values against residuals

 ggplot(rut.1, aes(x = .fitted, y = .resid)) + geom_point()

Normal quantile plot of residuals
ggplot(rut.1, aes(sample = .resid)) + stat_qq() + stat_qq_

Plotting residuals against x variables

$>$ Problem here is that residuals are in the fitted model, and the observed x-values are in the original data frame asphalt.

- Package broom contains a function augment that combines these two together so that they can later be plotted: start with a model first, and then augment with a data frame:
rut. 1 \% >\% augment(asphalt) -> rut.1a

What does rut.1a contain?

names (rut.1a)

[1] "pct.a.surf"
[6] "viscosity" "run"
[11] ".sigma" ".cooksd"
"fines"
".fitted"
".std.resid"
$>$ all the stuff in original data frame, plus:

- quantities from regression (starting with a dot)

Plotting residuals against x-variables

```
rut.1a \%>\%
    mutate (log_vis=log(viscosity)) \%>\%
    pivot_longer(
        c(pct.a.surf:voids, run, log_vis),
    names_to="xname", values_to="x"
    ) \(\%>\%\)
    \(\operatorname{ggplot}(\operatorname{aes}(\mathrm{x}=\mathrm{x}, \mathrm{y}=. \operatorname{resid}))+\)
    geom_point() + facet_wrap(~xname, scales = "free") -> g
```


The plot

Comments

There is serious curve in plot of residuals vs. fitted values. Suggests a transformation of y.

- The residuals-vs- x 's plots don't show any serious trends. Worst probably that potential curve against log-viscosity.
$>$ Also, large positive residual, 10, that shows up on all plots. Perhaps transformation of y will help with this too.
- If residual-fitted plot OK, but some residual- x plots not, try transforming those x 's, eg. by adding x^{2} to help with curve.

Which transformation?

Best way: consult with person who brought you the data.

- Can't do that here!
- No idea what transformation would be good.
- Let data choose: "Box-Cox transformation".
- Scale is that of "ladder of powers": power transformation, but 0 is log.

Running Box-Cox

From package MASS:
boxcox(rut.depth ~ pct.a.surf + pct.a.base + fines + voids
log(viscosity) + run, data = asphalt)

Comments on Box-Cox plot

$\lambda \lambda$ represents power to transform y with.
Best single choice of transformation parameter λ is peak of curve, close to 0 .
\checkmark Vertical dotted lines give CI for λ, about ($-0.05,0.2$).

- $\lambda=0$ means "log".
- Narrowness of confidence interval mean that these not supported by data:
- No transformation $(\lambda=1)$
- Square root $(\lambda=0.5)$
- Reciprocal $(\lambda=-1)$.

Relationships with explanatories

\rightarrow As before: plot response (now log(rut.depth)) against other explanatory variables, all in one shot:

```
asphalt %>%
    mutate(log_vis=log(viscosity)) %>%
    pivot_longer(
    c(pct.a.surf:voids, run, log_vis),
    names_to="xname", values_to="x"
    ) %>%
    ggplot(aes(y = log(rut.depth), x = x)) + geom_point() +
    facet_wrap(~xname, scales = "free") -> g3
```

The new plots g3

Modelling with transformed response

These trends look pretty straight, especially with log.viscosity.
V Values of log.rut. depth for each run have same spread.

- Other trends weak, but are straight if they exist.
$>$ Start modelling from the beginning again.
$>$ Model log.rut.depth in terms of everything else, see what can be removed:

```
rut.2 <- lm(log(rut.depth) ~ pct.a.surf + pct.a.base +
    fines + voids + log(viscosity) + run, data = asphalt)
```

- use tidy from broom to display just the coefficients.

Output

tidy(rut.2)

\# A tibble: 7 x 5
term
<chr>
1 (Intercept)
2 pct.a.surf
3 pct.a.base
4 fines
5 voids
$6 \log (v i s c o s i t y)$
7 run
estimate std.error statistic <dbl> <dbl> <dbl>

-1.57	2.44	-0.646	0.525
0.584	0.232	2.52	0.0190
-0.103	0.369	-0.280	0.782
0.0978	0.0941	1.04	0.309
0.199	0.123	1.62	0.119
-0.558	0.0854	-6.53	0.000000945
0.340	0.339	1.00	0.326

summary (rut. 2)

Call:
$\operatorname{lm}(f o r m u l a=\log (r u t . d e p t h) \sim$ pct.a.surf + pct.a.base + fir voids $+\log (v i s c o s i t y)+$ run, data $=$ asphalt $)$

Taking out everything non-significant

- Try: remove everything but pct.a.surf and log.viscosity:

```
rut. }3<-lm(log(rut.depth) ~ pct.a.surf + log(viscosity), data = asphal
summary(rut.3)
```

Call:

Residuals:

Min	1Q	Median	3Q	Max
-0.61938	-0.21361	0.06635	0.14932	0.63012

Coefficients:

$$
\text { Estimate Std. Error } t \text { value } \operatorname{Pr}(>|t|)
$$

(Intercept)	0.90014	1.08059	0.833	0.4119
pct.a.surf	0.39115	0.21879	1.788	0.0846.
log(viscosity)	-0.61856	0.02713	-22.797	$<2 e-16$ ***

Signif. codes: $0{ }^{\prime * * * ' ~} 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3208 on 28 degrees of freedom Multiple R-squared: 0.9509, Adjusted R-squared: 0.9474

Find the largest P -value by eye:

tidy(rut.2)

\# A tibble: 7 x 5
term
<chr>
1 (Intercept)
2 pct.a.surf
3 pct.a.base
4 fines
5 voids
6 log(viscosity)
7 run
estimate std.error statistic
<dbl> <dbl>
$\begin{array}{llll}-1.57 & 2.44 & -0.646 & 0.525\end{array}$
0.584
0.232
$2.52 \quad 0.0190$
$-0.103 \quad 0.369$
$0.0978 \quad 0.0941$
0.123
0.0854
0.339
p.value <dbl>
$>$ Largest P -value is 0.78 for pct.a.base, not significant.
So remove this first, re-fit and re-assess.

- Or, as over.

Get the computer to find the largest P-value for you

$>$ Output from tidy is itself a data frame, thus:

```
tidy(rut.2) %>% arrange(p.value)
```

\# A tibble: 7 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 log(viscosity) -0.558 $0.0854 \quad-6.53 \quad 0.000000945$
2 pct.a.surf $0.584 \quad 0.232 \quad 2.520 .0190$
3 voids
$0.199 \quad 0.123$
$1.62 \quad 0.119$
$\begin{array}{lllll}4 \text { fines } & 0.0978 & 0.0941 & 1.04 & 0.309\end{array}$
5 run $\quad 0.340 \quad 0.339 \quad 1.00 \quad 0.326$
6 (Intercept) -1.57 $2.44 \quad-0.6460 .525$
7 pct.a.base $\quad-0.103 \quad 0.369 \quad-0.2800 .782$
\rightarrow Largest P -value at the bottom.

Take out pct.a.base

- Copy and paste the 1m code and remove what you're removing:

```
rut.4 <- lm(log(rut.depth) ~ pct.a.surf + fines + voids +
    log(viscosity) + run, data = asphalt)
tidy(rut.4) %>% arrange(p.value) %>% dplyr::select(term, p.value
# A tibble: 6 x 2
        term
    <chr>
1 log(viscosity) 0.000000448
2 pct.a.surf 0.0143
3 voids 0.109
4 (Intercept)
0.208
5 run 0.279
fines
0.316
```

- fines is next to go, P -value 0.32 .

"Update"

Another way to do the same thing:

\# A tibble: 6×5				
term	estimate	std.error	statistic	p.value
<chr>	<dbl>	<dbl>	<dbl>	<dbl>
1 log (viscosity)	-0.552	0.0818	-6.75	0.000000448
2 pct.a.surf	0.593	0.225	2.63	0.0143
3 voids	0.200	0.121	1.66	0.109
4 (Intercept)	-2.08	1.61	-1.29	0.208
5 run	0.360	0.325	1.11	0.279
6 fines	0.0889	0.0870	1.02	0.316

- Again, fines is the one to go. (Output identical as it should be.)

Take out fines:

```
rut.5 <- update(rut.4, . ~ . - fines)
tidy(rut.5) %>% arrange(p.value) %>% dplyr::select(term, p
# A tibble: 5 x 2
term
<chr>
p.value <dbl>
1 log(viscosity) 0.0000000559
2 pct.a.surf 0.0200
3 voids 0.0577
4 run 0.365
5 (Intercept) 0.375
Can't take out intercept, so run, with P-value 0.36 , goes next.
```


Take out run:

```
rut.6 <- update(rut.5, . ~ . - run)
tidy(rut.6) %>% arrange(p.value) %>% dplyr::select(term, p
# A tibble: 4 x 2
    term
    <chr>
        p.value
        <dbl>
1 log(viscosity) 5.29e-19
2 pct.a.surf 1.80e- 2
3 voids 4.36e- 2
4 (Intercept) 4.61e- 1
Again, can't take out intercept, so largest P-value is for voids, 0.044 . But this is significant, so we shouldn't remove voids.
```


Comments

$>$ Here we stop: pct.a.surf, voids and log.viscosity would all make fit significantly worse if removed. So they stay.
$>$ Different final result from taking things out one at a time (top), than by taking out 4 at once (bottom):

```
summary(rut.6)
```

Call:
 data = asphalt)

Residuals:

Min	1Q	Median	3Q	Max
-0.53548	-0.20181	-0.01702	0.16748	0.54707

Coefficients:

$$
\text { Estimate Std. Error t value } \operatorname{Pr}(>|t|)
$$

$$
\begin{array}{lllll}
\text { (Intercept) } & -1.02079 & 1.36430 & -0.748 & 0.4608
\end{array}
$$

Comments on variable selection

- Best way to decide which x 's belong: expert knowledge: which of them should be important.
- Best automatic method: what we did, "backward selection".
- Do not learn about "stepwise regression"! eg. here
$>$ R has function step that does backward selection, like this:

```
step(rut.2, direction = "backward", test = "F")
```

Gets same answer as we did (by removing least significant x).
$>$ Removing non-significant x 's may remove interesting ones whose P-values happened not to reach 0.05 . Consider using less stringent cutoff like 0.20 or even bigger.

- Can also fit all possible regressions, as over (may need to do install.packages("leaps") first).

All possible regressions (output over)

Uses package leaps:

```
leaps <- regsubsets(log(rut.depth) ~ pct.a.surf +
        pct.a.base + fines + voids +
    log(viscosity) + run,
    data = asphalt, nbest = 2)
s <- summary(leaps)
with(s, data.frame(rsq, outmat)) -> d
```


The output

d \%>\% rownames_to_column("model") \%>\% arrange(desc (rsq))

		model	rsq						
1	6	(1)	0.9609642	*	*	*	*	*	*
2	5	(1)	0.9608365	*		*	*	*	*
3	5	(2)	0.9593265	*	*	*	*	*	
4	4	(1)	0.9591996	*			*	*	*
5	4	(2)	0.9589206	*		*	*	*	
6	3	(1)	0.9578631	*			*	*	
7	3	(2)	0.9534561	*		*		*	
8	2	(1)	0.9508647	*				*	
9	2	(2)	0.9479541				*	*	
10	1	(1)	0.9452562					*	
11	1	(2)	0.8624107						*

Comments

- Problem: even adding a worthless x increases R-squared. So try for line where R-squared stops increasing "too much", eg. top line (just log.viscosity), first 3-variable line (backwards-elimination model). Hard to judge.
- One solution (STAC67): adjusted R-squared, where adding worthless variable makes it go down.
- data.frame rather than tibble because there are several columns in outmat.

All possible regressions, adjusted R-squared

```
with(s, data.frame(adjr2, outmat)) %>%
    rownames_to_column("model") %>%
    arrange(desc(adjr2))
```


Revisiting the best model

- Best model was our rut.6:

\# A tibble: 4×5				
term	estimate	std.error	statistic	p.value
<chr>	<dbl>	<dbl>	<dbl>	<dbl>
1 (Intercept)	-1.02	1.36	-0.748	$4.61 \mathrm{e}^{-1}$
2 pct.a.surf	0.555	0.220	2.52	$1.80 \mathrm{e}-2$
3 voids	0.245	0.116	2.12	$4.36 \mathrm{e}-2$
$4 \mathrm{log}(\mathrm{viscosity)}$	-0.646	0.0288	-22.5	5.29e-19

Revisiting (2)

- Regression slopes say that rut depth increases as log-viscosity decreases, pct.a.surf increases and voids increases. This more or less checks out with out scatterplots against log.viscosity.
$>$ We should check residual plots again, though previous scatterplots say it's unlikely that there will be a problem:

```
g <- ggplot(rut.6, aes(y = .resid, x = .fitted)) +
geom_point()
```

Residuals against fitted values
g

Plotting residuals against x's

D Do our trick again to put them all on one plot:

```
augment(rut.6, asphalt) %>%
    mutate(log_vis=log(viscosity)) %>%
    pivot_longer(
    c(pct.a.surf:voids, run, log_vis),
    names_to="xname", values_to="x",
    ) %>%
    ggplot(aes(y = .resid, x = x)) + geom_point() +
    facet_wrap(~xname, scales = "free") -> g2
```

Residuals against the x's
g2

Comments

- None of the plots show any sort of pattern. The points all look random on each plot.
$>$ On the plot of fitted values (and on the one of log.viscosity), the points seem to form a "left half" and a "right half" with a gap in the middle. This is not a concern.
$>$ One of the pct.a.surf values is low outlier (4), shows up top left of that plot.
- Only two possible values of run; the points in each group look randomly scattered around 0 , with equal spreads.
- Residuals seem to go above zero further than below, suggesting a mild non-normality, but not enough to be a problem.

Variable-selection strategies

- Expert knowledge.
- Backward elimination.
- All possible regressions.

Taking a variety of models to experts and asking their opinion.

- Use a looser cutoff to eliminate variables in backward elimination (eg. only if P -value greater than 0.20).
\rightarrow If goal is prediction, eliminating worthless variables less important.
- If goal is understanding, want to eliminate worthless variables where possible.
- Results of variable selection not always reproducible, so caution advised.

