Assumptions

Assumptions

- The *t* procedures we have seen so far come with assumption of normally-distributed data
- but how much does that normality matter?
- Central Limit Theorem says that sampling distribution of sample mean is "approximately normal" if sample size is "large".
- Hence same applies to difference of two sample means.
- How to use this in practice? Draw a picture and make a call about whether sample size large enough.

Blue Jays attendances

```
ggplot(jays, aes(sample = attendance)) +
stat_qq() + stat_qq_line()
```


Comments

- Distribution of attendances somewhat skewed to the right (because of the short lower tail and the sort-of curve)
- Sample size n = 25 is reasonably large in Central Limit Theorem terms
- Use of t may be OK here despite skewed shape.

Learning to read

• Make normal quantile plots, one for each sample:

```
ggplot(kids, aes(sample = score)) +
stat_qq() + stat_qq_line() +
facet_wrap(~ group)
```


Comments

- with sample sizes over 20 in each group, these are easily normal enough to use a *t*-test.
- the (sampling distribution of the) difference between two sample means tends to have a more normal distribution than either sample mean individually, so that two-sample t tends to be better than you'd guess.

Pain relief

• With matched pairs, assumption is of normality of *differences*, so work those out first:

```
pain %>% mutate(diff = druga - drugb) -> pain
pain
```

A tibble	: 12 x	4	
subject	druga	drugb	diff
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	2	3.5	-1.5
2	3.6	5.7	-2.1
3	2.6	2.9	-0.300
4	2.6	2.4	0.200
5	7.3	9.9	-2.6
6	3.4	3.3	0.100
7	14.9	16.7	-1.80
8	6.6	6	0.600
9	2.3	3.8	-1.5
10	2	4	-2
11	6.8	9.1	-2.3
12	8.5	20.9	-12.4
	A tibble subject <dbl> 1 2 3 4 5 6 7 8 9 10 11 12</dbl>	A tibble: 12 x subject druga <dbl> <dbl> 1 2 2 3.6 3 2.6 4 2.6 5 7.3 6 3.4 7 14.9 8 6.6 9 2.3 10 2 11 6.8 12 8.5</dbl></dbl>	A tibble: 12 x 4 subject druga drugb <dbl> <dbl> <dbl> <dbl> 1 2 3.5 2 3.6 5.7 3 2.6 2.9 4 2.6 2.4 5 7.3 9.9 6 3.4 3.3 7 14.9 16.7 8 6.6 6 9 2.3 3.8 10 2 4 11 6.8 9.1 12 8.5 20.9</dbl></dbl></dbl></dbl>

Normality of differences

ggplot(pain,aes(sample=diff)) + stat_qq() + stat_qq_line()

Comments

- This is very non-normal (the low outlier)
- The sample size of n = 12 is not large
- We should have concerns about our matched pairs *t*-test.

Doing things properly

- The right way to use a t procedure:
 - draw a graph of our data (one of the standard graphs, or normal quantile plot)
 - use the graph to assess sufficient normality given the sample size
 - for a two-sample test, assess equality of spreads (boxplot easier for this)
 - if necessary, express our doubts about the t procedure (for now), or do a better test (later).

Looking ahead

- Looking at a normal quantile plot and assessing it with the sample size seems rather arbitrary. Can we do better? (Yes: using the bootstrap, later.)
- What to do if the *t* procedure is not to be trusted? Use a different test (later):
 - one sample: sign test
 - two samples: Mood's median test
 - matched pairs: sign test on differences.
- If you have heard about the signed rank or rank sum tests: they come with extra assumptions that are usually not satisfied if normality fails.