
The bootstrap revisited

Packages for this section

library(tidyverse)
library(bootstrap)

Source: Hesterberg et al

https://www.researchgate.net/publication/265399426_Bootstrap_Methods_and_Permutation_Tests

Is my sampling distribution normal enough?
▶ Recall IRS data (used as a motivation for the sign test) :

ggplot(irs, aes(x=Time))+geom_histogram(bins=10)

0

2

4

6

8

0 100 200 300 400 500
Time

co
un

t

▶ 𝑡 procedure for the mean would not be a good idea because
the distribution is skewed.

What actually matters

▶ It’s not the distribution of the data that has to be approx
normal (for a 𝑡 procedure).

▶ What matters is the sampling distribution of the sample mean.
▶ If the sample size is large enough, the sampling distribution

will be normal enough even if the data distribution is not.
▶ This is why we had to consider the sample size as well as the

shape.
▶ But how do we know whether this is the case or not? We only

have one sample.

The (nonparametric) bootstrap

▶ Typically, our sample will be reasonably representative of the
population.

▶ Idea: pretend the sample is the population, and sample from
it with replacement.

▶ Calculate test statistic, and repeat many times.
▶ This gives an idea of how our statistic might vary in repeated

samples: that is, its sampling distribution.
▶ Called the bootstrap distribution of the test statistic.
▶ If the bootstrap distribution is approx normal, infer that the

true sampling distribution also approx normal, therefore
inference about the mean such as 𝑡 is good enough.

▶ If not, we should be more careful.

Why it works

▶ We typically estimate population parameters by using the
corresponding sample thing: eg. estimate population mean
using sample mean.

▶ This called plug-in principle.
▶ The fraction of sample values less than a value 𝑥 called the

empirical distribution function (as a function of 𝑥).
▶ By plug-in principle, the empirical distribution function is an

estimate of the population CDF.
▶ In this sense, the sample is an estimate of the population, and

so sampling from it is an estimate of sampling from the
population.

Bootstrapping the IRS data

▶ Sampling with replacement is done like this (the default
sample size is as long as the original data):

boot <- sample(irs$Time, replace=T)
mean(boot)

[1] 201.2

▶ That’s one bootstrapped mean. We need a whole bunch.

A whole bunch
▶ Use the same idea as for simulating power:

tibble(sim = 1:1000) %>%
rowwise() %>%
mutate(boot_sample = list(sample(irs$Time, replace = TRUE)))

A tibble: 1,000 x 2
Rowwise:

sim boot_sample
<int> <list>

1 1 <dbl [30]>
2 2 <dbl [30]>
3 3 <dbl [30]>
4 4 <dbl [30]>
5 5 <dbl [30]>
6 6 <dbl [30]>
7 7 <dbl [30]>
8 8 <dbl [30]>
9 9 <dbl [30]>

10 10 <dbl [30]>
i 990 more rows

Get the mean of each of those
tibble(sim = 1:1000) %>%
rowwise() %>%
mutate(boot_sample = list(sample(irs$Time, replace = TRUE))) %>%
mutate(my_mean = mean(boot_sample)) -> samples

samples

A tibble: 1,000 x 3
Rowwise:

sim boot_sample my_mean
<int> <list> <dbl>

1 1 <dbl [30]> 196
2 2 <dbl [30]> 202.
3 3 <dbl [30]> 263.
4 4 <dbl [30]> 173.
5 5 <dbl [30]> 204.
6 6 <dbl [30]> 197.
7 7 <dbl [30]> 210.
8 8 <dbl [30]> 160.
9 9 <dbl [30]> 198.

10 10 <dbl [30]> 178.
i 990 more rows

Sampling distribution of sample mean

ggplot(samples, aes(x=my_mean)) + geom_histogram(bins=10)

0

50

100

150

200

250

160 200 240 280
my_mean

co
un

t

▶ Is that a slightly long right tail?

Normal quantile plot

might be better than a histogram:
ggplot(samples, aes(sample = my_mean)) +
stat_qq()+stat_qq_line()

160

200

240

280

−2 0 2
x

y

▶ a very very slight right-skewness, but very close to normal.

Confidence interval from the bootstrap distribution
There are two ways (at least):

▶ percentile bootstrap interval: take the 2.5 and 97.5 percentiles
(to get the middle 95%). This is easy, but not always the best:

(b_p=quantile(samples$my_mean, c(0.025, 0.975)))

2.5% 97.5%
162.5775 246.9092

▶ bootstrap 𝑡: use the SD of the bootstrapped sampling
distribution as the SE of the estimator of the mean and make
a 𝑡 interval:

n <- length(irs$Time)
t_star <- qt(0.975, n-1)
b_t <- with(samples, mean(my_mean)+c(-1, 1)*t_star*sd(my_mean))
b_t

[1] 156.5070 246.4032

Comparing
▶ get ordinary 𝑡 interval:

my_names=c("LCL", "UCL")
o_t <- t.test(irs$Time)$conf.int

▶ Compare the 2 bootstrap intervals with the ordinary 𝑡-interval:
tibble(limit=my_names, o_t, b_t, b_p)

A tibble: 2 x 4
limit o_t b_t b_p
<chr> <dbl> <dbl> <dbl>

1 LCL 155. 157. 163.
2 UCL 247. 246. 247.

▶ The bootstrap 𝑡 and the ordinary 𝑡 are very close
▶ The percentile bootstrap interval is noticeably shorter

(common) and higher (skewness).

Which to prefer?

▶ If the intervals agree, then they are all good.
▶ If they disagree, they are all bad!
▶ In that case, use BCA interval (over).

Bias correction and acceleration

▶ this from “An introduction to the bootstrap”, by Brad Efron
and Robert J. Tibshirani.

▶ there is way of correcting the CI for skewness in the bootstrap
distribution, called the BCa method

▶ complicated (see the Efron and Tibshirani book), but
implemented in bootstrap package.

Run this on the IRS data:

bca=bcanon(irs$Time, 1000, mean)
bca$confpoints

alpha bca point
[1,] 0.025 161.8333
[2,] 0.050 168.0667
[3,] 0.100 174.8333
[4,] 0.160 180.7667
[5,] 0.840 224.1333
[6,] 0.900 232.3000
[7,] 0.950 241.9333
[8,] 0.975 253.7333

use 2.5% and 97.5% points for CI

bca$confpoints %>% as_tibble() %>%
filter(alpha %in% c(0.025, 0.975)) %>%
pull(`bca point`) -> b_bca

b_bca

[1] 161.8333 253.7333

Comparing

tibble(limit=my_names, o_t, b_t, b_p, b_bca)

A tibble: 2 x 5
limit o_t b_t b_p b_bca
<chr> <dbl> <dbl> <dbl> <dbl>

1 LCL 155. 157. 163. 162.
2 UCL 247. 246. 247. 254.

▶ The BCA interval says that the mean should be estimated
even higher than the bootstrap percentile interval does.

▶ The BCA interval is the one to trust.

Bootstrapping the correlation
Recall the soap data:
url <- "http://ritsokiguess.site/datafiles/soap.txt"
soap <- read_delim(url," ")
soap

A tibble: 27 x 4
case scrap speed line

<dbl> <dbl> <dbl> <chr>
1 1 218 100 a
2 2 248 125 a
3 3 360 220 a
4 4 351 205 a
5 5 470 300 a
6 6 394 255 a
7 7 332 225 a
8 8 321 175 a
9 9 410 270 a

10 10 260 170 a
i 17 more rows

Scatterplot

ggplot(soap, aes(x=speed, y=scrap, colour=line))+
geom_point()+geom_smooth(method="lm", se=F)

200

300

400

100 150 200 250 300
speed

sc
ra

p

line

a

b

Comments

▶ Line B produces less scrap for any given speed.
▶ For line B, estimate the correlation between speed and scrap

(with a confidence interval.)

Extract the line B data; standard correlation test

soap %>% filter(line=="b") -> line_b
with(line_b, cor.test(speed, scrap))

Pearson's product-moment correlation

data: speed and scrap
t = 15.829, df = 10, p-value = 2.083e-08
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.9302445 0.9947166

sample estimates:
cor

0.9806224

Bootstrapping a correlation 1/2
▶ This illustrates a different technique: we need to keep the 𝑥

and 𝑦 values together.
▶ Sample rows of the data frame rather than individual values of

speed and scrap:
line_b %>% sample_frac(replace=T)

A tibble: 12 x 4
case scrap speed line

<dbl> <dbl> <dbl> <chr>
1 24 252 155 b
2 22 260 200 b
3 16 140 105 b
4 25 422 320 b
5 16 140 105 b
6 19 341 255 b
7 19 341 255 b
8 19 341 255 b
9 17 277 215 b

10 16 140 105 b
11 20 215 175 b
12 18 384 270 b

Bootstrapping a correlation 2/2

1000 times:
tibble(sim = 1:1000) %>%
rowwise() %>%
mutate(boot_df = list(sample_frac(line_b, replace = TRUE))) %>%
mutate(my_cor = with(boot_df, cor(speed, scrap))) -> cors

A picture of this

ggplot(cors, aes(x=my_cor))+geom_histogram(bins=15)

0

100

200

300

0.85 0.90 0.95 1.00
my_cor

co
un

t

Comments and next steps

▶ This is very left-skewed.
▶ Bootstrap percentile interval is:

(b_p=quantile(cors$my_cor, c(0.025, 0.975)))

2.5% 97.5%
0.9415748 0.9962462

▶ We probably need the BCA interval instead.

Getting the BCA interval 1/2
▶ To use bcanon, write a function that takes a vector of row

numbers and returns the correlation between speed and
scrap for those rows:

theta=function(rows, d) {
d %>% slice(rows) %>% with(., cor(speed, scrap))

}
theta(1:3, line_b)

[1] 0.9928971
line_b %>% slice(1:3)

A tibble: 3 x 4
case scrap speed line

<dbl> <dbl> <dbl> <chr>
1 16 140 105 b
2 17 277 215 b
3 18 384 270 b

▶ That looks about right.

Getting the BCA interval 2/2

▶ Inputs to bcanon are now:
▶ row numbers (1 through 12 in our case: 12 rows in line_b)
▶ number of bootstrap samples
▶ the function we just wrote
▶ the data frame:

points=bcanon(1:12, 1000, theta, line_b)$confpoints
points %>% as_tibble() %>%
filter(alpha %in% c(0.025, 0.975)) %>%
pull(`bca point`) -> b_bca

b_bca

[1] 0.9314334 0.9947799

Comparing the results

tibble(limit=my_names, o_c, b_p, b_bca)

A tibble: 2 x 4
limit o_c b_p b_bca
<chr> <dbl> <dbl> <dbl>

1 LCL 0.930 0.942 0.931
2 UCL 0.995 0.996 0.995

▶ The bootstrap percentile interval doesn’t go down far enough.
▶ The BCA interval seems to do a better job in capturing the

skewness of the distribution.
▶ The ordinary confidence interval for the correlation is very

similar to the BCA one, and thus seems to be trustworthy
here even though the correlation has a very skewed
distribution. (cor.test uses the Fisher 𝑧 transformation
which “spreads out” correlations close to 1).

The 𝑧-transformed bootstrapped correlations
cors %>%
mutate(z = 0.5 * log((1+my_cor)/(1-my_cor))) %>%
ggplot(aes(sample=z)) + stat_qq() + stat_qq_line()

2

3

4

−2 0 2
x

y

