
The bootstrap revisited

The bootstrap revisited 1 / 30

Packages for this section

library(tidyverse)
library(bootstrap)

Source: Hesterberg et al

The bootstrap revisited 2 / 30

https://www.researchgate.net/publication/265399426_Bootstrap_Methods_and_Permutation_Tests

Is my sampling distribution normal enough?
Recall IRS data (used as a motivation for the sign test) :

ggplot(irs, aes(x=Time))+geom_histogram(bins=10)

0

2

4

6

8

0 100 200 300 400 500
Time

co
un

t

𝑡 procedure for the mean would not be a good idea because the
distribution is skewed.

The bootstrap revisited 3 / 30

What actually matters

It’s not the distribution of the data that has to be approx normal (for
a 𝑡 procedure).
What matters is the sampling distribution of the sample mean.
If the sample size is large enough, the sampling distribution will be
normal enough even if the data distribution is not.

▶ This is why we had to consider the sample size as well as the shape.
But how do we know whether this is the case or not? We only have
one sample.

The bootstrap revisited 4 / 30

The (nonparametric) bootstrap

Typically, our sample will be reasonably representative of the
population.
Idea: pretend the sample is the population, and sample from it with
replacement.
Calculate test statistic, and repeat many times.
This gives an idea of how our statistic might vary in repeated
samples: that is, its sampling distribution.
Called the bootstrap distribution of the test statistic.
If the bootstrap distribution is approx normal, infer that the true
sampling distribution also approx normal, therefore inference about
the mean such as 𝑡 is good enough.
If not, we should be more careful.

The bootstrap revisited 5 / 30

Why it works

We typically estimate population parameters by using the
corresponding sample thing: eg. estimate population mean using
sample mean.
This called plug-in principle.
The fraction of sample values less than a value 𝑥 called the empirical
distribution function (as a function of 𝑥).
By plug-in principle, the empirical distribution function is an estimate
of the population CDF.
In this sense, the sample is an estimate of the population, and so
sampling from it is an estimate of sampling from the population.

The bootstrap revisited 6 / 30

Bootstrapping the IRS data

Sampling with replacement is done like this (the default sample size is
as long as the original data):

boot <- sample(irs$Time, replace=T)
mean(boot)

[1] 182

That’s one bootstrapped mean. We need a whole bunch.

The bootstrap revisited 7 / 30

A whole bunch
Use the same idea as for simulating power:

tibble(sim = 1:1000) %>%
rowwise() %>%
mutate(boot_sample = list(sample(irs$Time, replace = TRUE)))

A tibble: 1,000 x 2
Rowwise:

sim boot_sample
<int> <list>

1 1 <dbl [30]>
2 2 <dbl [30]>
3 3 <dbl [30]>
4 4 <dbl [30]>
5 5 <dbl [30]>
6 6 <dbl [30]>
7 7 <dbl [30]>
8 8 <dbl [30]>
9 9 <dbl [30]>
10 10 <dbl [30]>
i 990 more rows The bootstrap revisited 8 / 30

Get the mean of each of those
tibble(sim = 1:1000) %>%
rowwise() %>%
mutate(boot_sample = list(sample(irs$Time, replace = TRUE))) %>%
mutate(my_mean = mean(boot_sample)) -> samples

samples

A tibble: 1,000 x 3
Rowwise:

sim boot_sample my_mean
<int> <list> <dbl>

1 1 <dbl [30]> 196
2 2 <dbl [30]> 202.
3 3 <dbl [30]> 263.
4 4 <dbl [30]> 173.
5 5 <dbl [30]> 204.
6 6 <dbl [30]> 197.
7 7 <dbl [30]> 210.
8 8 <dbl [30]> 160.
9 9 <dbl [30]> 198.
10 10 <dbl [30]> 178.
i 990 more rows

The bootstrap revisited 9 / 30

Sampling distribution of sample mean

ggplot(samples, aes(x=my_mean)) + geom_histogram(bins=10)

0

50

100

150

200

250

160 200 240 280
my_mean

co
un

t

Is that a slightly long right tail?

The bootstrap revisited 10 / 30

Normal quantile plot
might be better than a histogram:

ggplot(samples, aes(sample = my_mean)) +
stat_qq()+stat_qq_line()

160

200

240

280

−2 0 2
x

y

a very very slight right-skewness, but very close to normal.

The bootstrap revisited 11 / 30

Confidence interval from the bootstrap distribution
There are two ways (at least):

percentile bootstrap interval: take the 2.5 and 97.5 percentiles (to get
the middle 95%). This is easy, but not always the best:

(b_p=quantile(samples$my_mean, c(0.025, 0.975)))

2.5% 97.5%
162.5775 246.9092

bootstrap 𝑡: use the SD of the bootstrapped sampling distribution as
the SE of the estimator of the mean and make a 𝑡 interval:

n <- length(irs$Time)
t_star <- qt(0.975, n-1)
b_t <- with(samples, mean(my_mean)+c(-1, 1)*t_star*sd(my_mean))
b_t

[1] 156.5070 246.4032
The bootstrap revisited 12 / 30

Comparing
get ordinary 𝑡 interval:

my_names=c("LCL", "UCL")
o_t <- t.test(irs$Time)$conf.int

Compare the 2 bootstrap intervals with the ordinary 𝑡-interval:

tibble(limit=my_names, o_t, b_t, b_p)

A tibble: 2 x 4
limit o_t b_t b_p
<chr> <dbl> <dbl> <dbl>

1 LCL 155. 157. 163.
2 UCL 247. 246. 247.

The bootstrap 𝑡 and the ordinary 𝑡 are very close
The percentile bootstrap interval is noticeably shorter (common) and
higher (skewness).

The bootstrap revisited 13 / 30

Which to prefer?

If the intervals agree, then they are all good.
If they disagree, they are all bad!
In that case, use BCA interval (over).

The bootstrap revisited 14 / 30

Bias correction and acceleration

this from “An introduction to the bootstrap”, by Brad Efron and
Robert J. Tibshirani.
there is way of correcting the CI for skewness in the bootstrap
distribution, called the BCa method
complicated (see the Efron and Tibshirani book), but implemented in
bootstrap package.

The bootstrap revisited 15 / 30

Run this on the IRS data:

bca=bcanon(irs$Time, 1000, mean)
bca$confpoints

alpha bca point
[1,] 0.025 161.8333
[2,] 0.050 168.0667
[3,] 0.100 174.8333
[4,] 0.160 180.7667
[5,] 0.840 224.1333
[6,] 0.900 232.3000
[7,] 0.950 241.9333
[8,] 0.975 253.7333

The bootstrap revisited 16 / 30

use 2.5% and 97.5% points for CI

bca$confpoints %>% as_tibble() %>%
filter(alpha %in% c(0.025, 0.975)) %>%
pull(`bca point`) -> b_bca

b_bca

[1] 161.8333 253.7333

The bootstrap revisited 17 / 30

Comparing

tibble(limit=my_names, o_t, b_t, b_p, b_bca)

A tibble: 2 x 5
limit o_t b_t b_p b_bca
<chr> <dbl> <dbl> <dbl> <dbl>

1 LCL 155. 157. 163. 162.
2 UCL 247. 246. 247. 254.

The BCA interval says that the mean should be estimated even higher
than the bootstrap percentile interval does.
The BCA interval is the one to trust.

The bootstrap revisited 18 / 30

Bootstrapping the correlation
Recall the soap data:
url <- "http://ritsokiguess.site/datafiles/soap.txt"
soap <- read_delim(url," ")
soap

A tibble: 27 x 4
case scrap speed line

<dbl> <dbl> <dbl> <chr>
1 1 218 100 a
2 2 248 125 a
3 3 360 220 a
4 4 351 205 a
5 5 470 300 a
6 6 394 255 a
7 7 332 225 a
8 8 321 175 a
9 9 410 270 a
10 10 260 170 a
i 17 more rows

The bootstrap revisited 19 / 30

Scatterplot

ggplot(soap, aes(x=speed, y=scrap, colour=line))+
geom_point()+geom_smooth(method="lm", se=F)

200

300

400

100 150 200 250 300
speed

sc
ra

p

line

a

b

The bootstrap revisited 20 / 30

Comments

Line B produces less scrap for any given speed.
For line B, estimate the correlation between speed and scrap (with a
confidence interval.)

The bootstrap revisited 21 / 30

Extract the line B data; standard correlation test

soap %>% filter(line=="b") -> line_b
with(line_b, cor.test(speed, scrap))

Pearson's product-moment correlation

data: speed and scrap
t = 15.829, df = 10, p-value = 2.083e-08
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.9302445 0.9947166
sample estimates:

cor
0.9806224

The bootstrap revisited 22 / 30

Bootstrapping a correlation 1/2
This illustrates a different technique: we need to keep the 𝑥 and 𝑦
values together.
Sample rows of the data frame rather than individual values of speed
and scrap:

line_b %>% sample_frac(replace=T)

A tibble: 12 x 4
case scrap speed line

<dbl> <dbl> <dbl> <chr>
1 24 252 155 b
2 22 260 200 b
3 16 140 105 b
4 25 422 320 b
5 16 140 105 b
6 19 341 255 b
7 19 341 255 b
8 19 341 255 b
9 17 277 215 b

10 16 140 105 b
11 20 215 175 b
12 18 384 270 b

The bootstrap revisited 23 / 30

Bootstrapping a correlation 2/2

1000 times:

tibble(sim = 1:1000) %>%
rowwise() %>%
mutate(boot_df = list(sample_frac(line_b, replace = TRUE))) %>%
mutate(my_cor = with(boot_df, cor(speed, scrap))) -> cors

The bootstrap revisited 24 / 30

A picture of this

ggplot(cors, aes(x=my_cor))+geom_histogram(bins=15)

0

100

200

300

0.85 0.90 0.95 1.00
my_cor

co
un

t

The bootstrap revisited 25 / 30

Comments and next steps

This is very left-skewed.
Bootstrap percentile interval is:

(b_p=quantile(cors$my_cor, c(0.025, 0.975)))

2.5% 97.5%
0.9415748 0.9962462

We probably need the BCA interval instead.

The bootstrap revisited 26 / 30

Getting the BCA interval 1/2
To use bcanon, write a function that takes a vector of row numbers
and returns the correlation between speed and scrap for those rows:

theta=function(rows, d) {
d %>% slice(rows) %>% with(., cor(speed, scrap))

}
theta(1:3, line_b)

[1] 0.9928971

line_b %>% slice(1:3)

A tibble: 3 x 4
case scrap speed line

<dbl> <dbl> <dbl> <chr>
1 16 140 105 b
2 17 277 215 b
3 18 384 270 b

That looks about right.
The bootstrap revisited 27 / 30

Getting the BCA interval 2/2

Inputs to bcanon are now:
▶ row numbers (1 through 12 in our case: 12 rows in line_b)
▶ number of bootstrap samples
▶ the function we just wrote
▶ the data frame:

points=bcanon(1:12, 1000, theta, line_b)$confpoints
points %>% as_tibble() %>%
filter(alpha %in% c(0.025, 0.975)) %>%
pull(`bca point`) -> b_bca

b_bca

[1] 0.9314334 0.9947799

The bootstrap revisited 28 / 30

Comparing the results

tibble(limit=my_names, o_c, b_p, b_bca)

A tibble: 2 x 4
limit o_c b_p b_bca
<chr> <dbl> <dbl> <dbl>

1 LCL 0.930 0.942 0.931
2 UCL 0.995 0.996 0.995

The bootstrap percentile interval doesn’t go down far enough.
The BCA interval seems to do a better job in capturing the skewness
of the distribution.
The ordinary confidence interval for the correlation is very similar to
the BCA one, and thus seems to be trustworthy here even though the
correlation has a very skewed distribution. (cor.test uses the Fisher
𝑧 transformation which “spreads out” correlations close to 1).

The bootstrap revisited 29 / 30

The 𝑧-transformed bootstrapped correlations

cors %>%
mutate(z = 0.5 * log((1+my_cor)/(1-my_cor))) %>%
ggplot(aes(sample=z)) + stat_qq() + stat_qq_line()

2

3

4

−2 0 2
x

y

The bootstrap revisited 30 / 30

