Bootstrap for sampling distribution of sample mean

Assessing assumptions

- Our t-tests assume normality of variable being tested
- but, Central Limit Theorem says that normality matters less if sample is "large"
- in practice "approximate normality" is enough, but how do we assess whether what we have is normal enough?
- so far, use histogram/boxplot and make a call, allowing for sample size.

What actually has to be normal

is: sampling distribution of sample mean

- the distribution of sample mean over all possible samples
- but we only have one sample!
- Idea: assume our sample is representative of the population, and draw samples from our sample (!), with replacement.
- This gives an idea of what different samples from the population might look like.
- Called *bootstrap*, after expression "to pull yourself up by your own bootstraps".

library(tidyverse)

Blue Jays attendances jays\$attendance

[1] 48414 17264 15086 14433 21397 34743 44794 14184 15606 [13] 21312 30430 42917 42419 29306 15062 16402 19014 21195 [25] 17276

A bootstrap sample:

s <- sample(jays\$attendance, replace = TRUE)
s</pre>

[1] 21195 34743 21312 44794 16402 19014 34743 21195 17264 [13] 34743 19217 14433 15062 16402 15062 34743 15062 15086 [25] 30430

It is easier to see what is happening if we sort both the actual attendances and the bootstrap sample:

```
sort(jays$attendance)
```

[1] 14184 14433 15062 15086 15168 15606 16402 17264 17276

Getting mean of bootstrap sample

- A bootstrap sample is same size as original, but contains repeated values (eg. 15062) and missing ones (42917).
- We need the mean of our bootstrap sample:

mean(s)

[1] 23055.28

This is a little different from the mean of our actual sample: mean(jays\$attendance)

[1] 25070.16

- Want a sense of how the sample mean might vary, if we were able to take repeated samples from our population.
- Idea: take lots of *bootstrap* samples, and see how *their* sample means vary.

Setting up bootstrap sampling

Begin by setting up a dataframe that contains a row for each bootstrap sample. I usually call this column sim. Do just 4 to get the idea:

tibble(sim = 1:4)

A tibble: 4 x 1
 sim
 <int>
1 1
2 2
3 3
4 4

Drawing the bootstrap samples

Then set up to work one row at a time, and draw a bootstrap sample of the attendances in each row:

```
tibble(sim = 1:4) \%>%
 rowwise() %>%
  mutate(sample = list(sample(jays$attendance, replace = T)
```

```
# A tibble: 4 \ge 2
```

```
# Rowwise:
```

sim sample

<int> <list>

- 1 <dbl [25]> 1
- 2 <dbl [25]> 2
- 3 3 <dbl [25]>
- 4 <dbl [25]> 4
 - Each row of our dataframe contains all of a bootstrap sample of 25 observations drawn with replacement from the attendances.

Sample means

Find the mean of each sample:

```
tibble(sim = 1:4) %>%
rowwise() %>%
mutate(sample = list(sample(jays$attendance, replace = The mutate(my_mean = mean(sample))
```

A tibble: 4 x 3
Rowwise:

	sim	sampl	_e	my_mean
	<int></int>	<list></list>		<dbl></dbl>
1	1	<dbl< td=""><td>[25]></td><td>28472.</td></dbl<>	[25]>	28472.
2	2	<dbl< td=""><td>[25]></td><td>28648.</td></dbl<>	[25]>	28648.
3	3	<dbl< td=""><td>[25]></td><td>23329.</td></dbl<>	[25]>	23329.
				04000

4 4 <dbl [25]> 24808.

These are (four simulated values of) the bootstrapped sampling distribution of the sample mean.

Make a histogram of them

rather pointless here, but to get the idea:

```
tibble(sim = 1:4) %>%
rowwise() %>%
mutate(sample = list(sample(jays$attendance, replace = TH
mutate(my_mean = mean(sample)) %>%
ggplot(aes(x = my_mean)) + geom_histogram(bins = 3) -> g
```

The (pointless) histogram

g

Now do again with a decent number of bootstrap samples

```
say 1000, and put a decent number of bins on the histogram
also:
```

```
tibble(sim = 1:1000) %>%
rowwise() %>%
mutate(sample = list(sample(jays$attendance, replace = Th
mutate(my_mean = mean(sample)) %>%
ggplot(aes(x = my_mean)) + geom_histogram(bins = 10) -> g
```

The (better) histogram

g

Comments

This is very close to normal

- The bootstrap says that the sampling distribution of the sample mean is close to normal, even though the distribution of the data is not
- A sample size of 25 is big enough to overcome the skewness that we saw
- This is the Central Limit Theorem in practice
- It is surprisingly powerful.
- Thus, the *t*-test is actually perfectly good here.

Comments on the code 1/2

You might have been wondering about this:

```
tibble(sim = 1:4) %>%
rowwise() %>%
mutate(sample = list(sample(jays$attendance, replace = The second second
```

```
# A tibble: 4 x 2
# Rowwise:
    sim sample
    <int> <list>
1    1 <dbl [25]>
2    2 <dbl [25]>
3    3 <dbl [25]>
4    4 <dbl [25]>
```

Comments on the code 2/2

Two samples

- Assumption: *both* samples are from a normal distribution.
- In this case, each sample should be "normal enough" given its sample size, since Central Limit Theorem will help.
- Use bootstrap on each group independently, as above.

Kids learning to read

2

#	A	tił	b]	le:	44	х
	Ę	groi	ıp	sc	ore	
	<	<ch1< td=""><td><u>;</u>></td><td><d< td=""><td>bl></td><td></td></d<></td></ch1<>	<u>;</u> >	<d< td=""><td>bl></td><td></td></d<>	bl>	
1	t	J			24	
2	t	5			61	
3	t	5			59	
4	t	5			46	
5	t	5			43	
6	t	5			44	
7	t	5			52	
8	t	5			43	
9	t	5			58	
10	t	5			67	
#	i	34	mc	ore	rou	JS

ggplot(kids, aes(x=group, y=score)) + geom_boxplot()

Getting just the control group

Use filter to select rows where something is true:

```
kids %>% filter(group=="c") -> controls
controls
```

A tibble: 23×2 group score <chr> <dbl> 1 c 42 2 c 33 3 c 46 4 c 37 5 c 43 6 c 41 7 с 10 8 c 42 9 c 55 10 c 19 # i 13 more rows

Bootstrap these

```
tibble(sim = 1:1000) %>%
rowwise() %>%
mutate(sample = list(sample(controls$score, replace = TRU
mutate(my_mean = mean(sample)) %>%
ggplot(aes(x = my_mean)) + geom_histogram(bins = 10)
```



```
... and the treatment group:
kids %>% filter(group=="t") -> treats
tibble(sim = 1:1000) %>%
rowwise() %>%
mutate(sample = list(sample(treats$score, replace = TRUE)
mutate(my_mean = mean(sample)) %>%
ggplot(aes(x = my_mean)) + geom histogram(bins = 15)
```


Comments

sampling distributions of sample means both look pretty normal, though treatment group is a tiny bit left-skewed
 as we thought, no problems with our two-sample t at all.