
Bootstrap for sampling distribution of sample
mean



Assessing assumptions

▶ Our 𝑡-tests assume normality of variable being tested
▶ but, Central Limit Theorem says that normality matters less if

sample is “large”
▶ in practice “approximate normality” is enough, but how do we

assess whether what we have is normal enough?
▶ so far, use histogram/boxplot and make a call, allowing for

sample size.



What actually has to be normal

▶ is: sampling distribution of sample mean
▶ the distribution of sample mean over all possible samples
▶ but we only have one sample!
▶ Idea: assume our sample is representative of the population,

and draw samples from our sample (!), with replacement.
▶ This gives an idea of what different samples from the

population might look like.
▶ Called bootstrap, after expression “to pull yourself up by your

own bootstraps”.



Packages

library(tidyverse)



Blue Jays attendances
jays$attendance

[1] 48414 17264 15086 14433 21397 34743 44794 14184 15606 18581 19217 21519
[13] 21312 30430 42917 42419 29306 15062 16402 19014 21195 33086 37929 15168
[25] 17276

▶ A bootstrap sample:
s <- sample(jays$attendance, replace = TRUE)
s

[1] 21195 34743 21312 44794 16402 19014 34743 21195 17264 18581 19014 19217
[13] 34743 19217 14433 15062 16402 15062 34743 15062 15086 15168 15086 48414
[25] 30430

▶ It is easier to see what is happening if we sort both the actual
attendances and the bootstrap sample:

sort(jays$attendance)

[1] 14184 14433 15062 15086 15168 15606 16402 17264 17276 18581 19014 19217
[13] 21195 21312 21397 21519 29306 30430 33086 34743 37929 42419 42917 44794
[25] 48414
sort(s)

[1] 14433 15062 15062 15062 15086 15086 15168 16402 16402 17264 18581 19014
[13] 19014 19217 19217 21195 21195 21312 30430 34743 34743 34743 34743 44794
[25] 48414



Getting mean of bootstrap sample

▶ A bootstrap sample is same size as original, but contains
repeated values (eg. 15062) and missing ones (42917).

▶ We need the mean of our bootstrap sample:
mean(s)

[1] 23055.28

▶ This is a little different from the mean of our actual sample:
mean(jays$attendance)

[1] 25070.16

▶ Want a sense of how the sample mean might vary, if we were
able to take repeated samples from our population.

▶ Idea: take lots of bootstrap samples, and see how their sample
means vary.



Setting up bootstrap sampling

▶ Begin by setting up a dataframe that contains a row for each
bootstrap sample. I usually call this column sim. Do just 4 to
get the idea:

tibble(sim = 1:4)

# A tibble: 4 x 1
sim

<int>
1 1
2 2
3 3
4 4



Drawing the bootstrap samples
▶ Then set up to work one row at a time, and draw a bootstrap

sample of the attendances in each row:
tibble(sim = 1:4) %>%

rowwise() %>%
mutate(sample = list(sample(jays$attendance, replace = TRUE)))

# A tibble: 4 x 2
# Rowwise:

sim sample
<int> <list>

1 1 <dbl [25]>
2 2 <dbl [25]>
3 3 <dbl [25]>
4 4 <dbl [25]>

▶ Each row of our dataframe contains all of a bootstrap sample
of 25 observations drawn with replacement from the
attendances.



Sample means
▶ Find the mean of each sample:

tibble(sim = 1:4) %>%
rowwise() %>%
mutate(sample = list(sample(jays$attendance, replace = TRUE))) %>%
mutate(my_mean = mean(sample))

# A tibble: 4 x 3
# Rowwise:

sim sample my_mean
<int> <list> <dbl>

1 1 <dbl [25]> 28472.
2 2 <dbl [25]> 28648.
3 3 <dbl [25]> 23329.
4 4 <dbl [25]> 24808.

▶ These are (four simulated values of) the bootstrapped
sampling distribution of the sample mean.



Make a histogram of them

▶ rather pointless here, but to get the idea:
tibble(sim = 1:4) %>%

rowwise() %>%
mutate(sample = list(sample(jays$attendance, replace = TRUE))) %>%
mutate(my_mean = mean(sample)) %>%
ggplot(aes(x = my_mean)) + geom_histogram(bins = 3) -> g



The (pointless) histogram
g
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Now do again with a decent number of bootstrap samples

▶ say 1000, and put a decent number of bins on the histogram
also:

tibble(sim = 1:1000) %>%
rowwise() %>%
mutate(sample = list(sample(jays$attendance, replace = TRUE))) %>%
mutate(my_mean = mean(sample)) %>%
ggplot(aes(x = my_mean)) + geom_histogram(bins = 10) -> g



The (better) histogram
g
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Comments

▶ This is very close to normal
▶ The bootstrap says that the sampling distribution of the

sample mean is close to normal, even though the distribution
of the data is not

▶ A sample size of 25 is big enough to overcome the skewness
that we saw

▶ This is the Central Limit Theorem in practice
▶ It is surprisingly powerful.
▶ Thus, the 𝑡-test is actually perfectly good here.



Comments on the code 1/2

▶ You might have been wondering about this:
tibble(sim = 1:4) %>%

rowwise() %>%
mutate(sample = list(sample(jays$attendance, replace = TRUE)))

# A tibble: 4 x 2
# Rowwise:

sim sample
<int> <list>

1 1 <dbl [25]>
2 2 <dbl [25]>
3 3 <dbl [25]>
4 4 <dbl [25]>



Comments on the code 2/2

▶ how did we squeeze all 25 sample values into one cell?
▶ sample is a so-called “list-column” that can contain anything.

▶ why did we have to put list() around the sample()?
▶ because sample produces a collection of numbers, not just a

single one
▶ the list() signals this: “make a list-column of samples”.



Two samples

▶ Assumption: both samples are from a normal distribution.
▶ In this case, each sample should be “normal enough” given its

sample size, since Central Limit Theorem will help.
▶ Use bootstrap on each group independently, as above.



Kids learning to read
# A tibble: 44 x 2

group score
<chr> <dbl>

1 t 24
2 t 61
3 t 59
4 t 46
5 t 43
6 t 44
7 t 52
8 t 43
9 t 58

10 t 67
# i 34 more rows
ggplot(kids, aes(x=group, y=score)) + geom_boxplot()
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Getting just the control group
▶ Use filter to select rows where something is true:

kids %>% filter(group=="c") -> controls
controls

# A tibble: 23 x 2
group score
<chr> <dbl>

1 c 42
2 c 33
3 c 46
4 c 37
5 c 43
6 c 41
7 c 10
8 c 42
9 c 55

10 c 19
# i 13 more rows



Bootstrap these
tibble(sim = 1:1000) %>%

rowwise() %>%
mutate(sample = list(sample(controls$score, replace = TRUE))) %>%
mutate(my_mean = mean(sample)) %>%
ggplot(aes(x = my_mean)) + geom_histogram(bins = 10)
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… and the treatment group:
kids %>% filter(group=="t") -> treats
tibble(sim = 1:1000) %>%

rowwise() %>%
mutate(sample = list(sample(treats$score, replace = TRUE))) %>%
mutate(my_mean = mean(sample)) %>%
ggplot(aes(x = my_mean)) + geom_histogram(bins = 15)
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Comments

▶ sampling distributions of sample means both look pretty
normal, though treatment group is a tiny bit left-skewed

▶ as we thought, no problems with our two-sample 𝑡 at all.


