Bootstrap for sampling distribution of sample mean

Assessing assumptions

- Our t-tests assume normality of variable being tested
\rightarrow but, Central Limit Theorem says that normality matters less if sample is "large"
- in practice "approximate normality" is enough, but how do we assess whether what we have is normal enough?
> so far, use histogram/boxplot and make a call, allowing for sample size.

What actually has to be normal

- is: sampling distribution of sample mean
the distribution of sample mean over all possible samples
- but we only have one sample!
- Idea: assume our sample is representative of the population, and draw samples from our sample (!), with replacement.
- This gives an idea of what different samples from the population might look like.
- Called bootstrap, after expression "to pull yourself up by your own bootstraps".

Packages

library(tidyverse)

Blue Jays attendances

jays\$attendance

$$
\begin{array}{rlllllllll}
{[1]} & 48414 & 17264 & 15086 & 14433 & 21397 & 34743 & 44794 & 14184 & 15606 \\
\text { [13] } & 21312 & 30430 & 42917 & 42419 & 29306 & 15062 & 16402 & 19014 & 21195 \\
\text { [25] } & 17276
\end{array}
$$

- A bootstrap sample:

```
s <- sample(jays$attendance, replace = TRUE)
S
```

[1] 21195347432131244794164021901434743119517264 [13] 347431921714433150621640215062347431506215086 [25] 30430
$>$ It is easier to see what is happening if we sort both the actual attendances and the bootstrap sample:
sort(jays\$attendance)
[1] $\begin{array}{llllllllll}14184 & 14433 & 15062 & 15086 & 15168 & 15606 & 16402 & 17264 & 17276\end{array}$

Getting mean of bootstrap sample

- A bootstrap sample is same size as original, but contains repeated values (eg. 15062) and missing ones (42917).
\rightarrow We need the mean of our bootstrap sample:
mean(s)
[1] 23055.28
- This is a little different from the mean of our actual sample:
mean(jays\$attendance)
[1] 25070.16
- Want a sense of how the sample mean might vary, if we were able to take repeated samples from our population.
- Idea: take lots of bootstrap samples, and see how their sample means vary.

Setting up bootstrap sampling

- Begin by setting up a dataframe that contains a row for each bootstrap sample. I usually call this column sim. Do just 4 to get the idea:

```
tibble(sim = 1:4)
# A tibble: 4 x 1
        sim
    <int>
1 1
2
3
4
```


Drawing the bootstrap samples

- Then set up to work one row at a time, and draw a bootstrap sample of the attendances in each row:
tibble(sim = 1:4) \%>\%
rowwise() \%>\%
mutate(sample = list(sample(jays\$attendance, replace = TH
\# A tibble: 4 x 2
\# Rowwise:
sim sample
<int> <list>
1
1 <dbl [25]>
2 2 <dbl [25]>
3 3 <dbl [25]>
4 4 <dbl [25]>
- Each row of our dataframe contains all of a bootstrap sample of 25 observations drawn with replacement from the attendances.

Sample means

\checkmark Find the mean of each sample:

```
tibble(sim = 1:4) \%>\%
    rowwise() \%>\%
    mutate (sample \(=\) list(sample(jays\$attendance, replace \(=\mathrm{TH}\)
    mutate(my_mean = mean(sample))
```

\# A tibble: 4 x 3
\# Rowwise:
sim sample my_mean
<int> <list> <dbl>
$1 \quad 1$ <dbl [25]> 28472.
2 2 <dbl [25]> 28648.
3
4
3 <dbl [25]> 23329.
4 <dbl [25]> 24808.

These are (four simulated values of) the bootstrapped sampling distribution of the sample mean.

Make a histogram of them

$>$ rather pointless here, but to get the idea:

```
tibble(sim = 1:4) %>%
    rowwise() %>%
    mutate(sample = list(sample(jays$attendance, replace = TH
    mutate(my_mean = mean(sample)) %>%
    ggplot(aes(x = my_mean)) + geom_histogram(bins = 3) ->
```

The (pointless) histogram
g

Now do again with a decent number of bootstrap samples
say 1000, and put a decent number of bins on the histogram also:

```
tibble(sim = 1:1000) %>%
    rowwise() %>%
    mutate(sample = list(sample(jays$attendance, replace = TH
    mutate(my_mean = mean(sample)) %>%
    ggplot(aes(x = my_mean)) + geom_histogram(bins = 10) ->
```

The (better) histogram
g

Comments

- This is very close to normal
- The bootstrap says that the sampling distribution of the sample mean is close to normal, even though the distribution of the data is not
A sample size of 25 is big enough to overcome the skewness that we saw
This is the Central Limit Theorem in practice
- It is surprisingly powerful.

Thus, the t-test is actually perfectly good here.

Comments on the code $1 / 2$

- You might have been wondering about this:

```
tibble(sim = 1:4) %>%
    rowwise() %>%
# A tibble: 4 x 2
# Rowwise:
    sim sample
    <int> <list>
        1 <dbl [25]>
2 2 <dbl [25]>
3 3 <dbl [25]>
4 4 <dbl [25]>
```

 mutate (sample \(=\) list(sample(jays\$attendance, replace \(=\mathrm{TH}\)

Comments on the code $2 / 2$

$>$ how did we squeeze all 25 sample values into one cell?

- sample is a so-called "list-column" that can contain anything.
- why did we have to put list() around the sample()?
- because sample produces a collection of numbers, not just a single one
- the list() signals this: "make a list-column of samples".

Two samples

- Assumption: both samples are from a normal distribution.
- In this case, each sample should be "normal enough" given its sample size, since Central Limit Theorem will help.
- Use bootstrap on each group independently, as above.

Kids learning to read
\# A tibble: 44 x 2
group score
<chr> <dbl>
$1 \mathrm{t} \quad 24$
$2 \mathrm{t} \quad 61$
3 t 59
$4 \mathrm{t} \quad 46$
$5 \mathrm{t} \quad 43$
$6 \mathrm{t} \quad 44$
$7 \mathrm{t} \quad 52$
8 t 43
$9 \mathrm{t} \quad 58$
$10 \mathrm{t} \quad 67$
\# i 34 more rows
ggplot(kids, aes(x=group, y=score)) + geom_boxplot()

Getting just the control group

- Use filter to select rows where something is true:

\# i 13 more rows

Bootstrap these

$$
\begin{aligned}
& \text { tibble(sim = } 1: 1000) \%>\% \\
& \quad \text { rowwise() } \%>\% \\
& \text { mutate (sample }=\text { list(sample(controls\$score, replace = TRT } \\
& \text { mutate }\left(m y _m e a n=\text { mean }(\text { sample })\right) \%>\% \\
& \text { ggplot }(a e s(x=\text { my_mean)) }+ \text { geom_histogram(bins = 10) }
\end{aligned}
$$

... and the treatment group:
kids \%>\% filter (group=="t") -> treats
tibble (sim = 1:1000) \%>\%
rowwise() \%>\%
mutate(sample = list(sample(treats\$score, replace = TRUE)
mutate (my_mean = mean(sample)) $\%>\%$
ggplot(aes(x = my_mean)) + geom_histogram(bins = 15)

Comments

- sampling distributions of sample means both look pretty normal, though treatment group is a tiny bit left-skewed
$>$ as we thought, no problems with our two-sample t at all.

