Analysis of variance

Packages

library(tidyverse)
library(smmr)
library(PMCMRplus)

Jumping rats

- Link between exercise and healthy bones (many studies).
- Exercise stresses bones and causes them to get stronger.
- Study (Purdue): effect of jumping on bone density of growing rats.
- 30 rats, randomly assigned to 1 of 3 treatments:
 - No jumping (control)
 - Low-jump treatment (30 cm)
 - High-jump treatment (60 cm)
- 8 weeks, 10 jumps/day, 5 days/week.
- Bone density of rats (mg/cm³) measured at end.

Jumping rats 2/2

- See whether larger amount of exercise (jumping) went with higher bone density.
- Random assignment: rats in each group similar in all important ways.
- So entitled to draw conclusions about cause and effect.

Values separated by spaces:

my_url <- "http://ritsokiguess.site/datafiles/jumping.txt"
rats <- read_delim(my_url," ")</pre>

The data (some random rows) rats %>% slice_sample(n=10)

# 4	A tibble:	10 x 2			
group		density			
	<chr></chr>	<dbl></dbl>			
1	Control	621			
2	Lowjump	607			
3	Lowjump	635			
4	Lowjump	632			
5	Highjump	643			
6	Control	611			
7	Highjump	650			
8	Lowjump	588			
9	Lowjump	594			
10	Highjump	674			

rats

A tibble: 30 x 2

Boxplots

ggplot(rats, aes(y=density, x=group)) + geom_boxplot()

Or, arranging groups in data (logical) order

ggplot(rats, aes(y=density, x=fct_inorder(group))) +
geom_boxplot()

Analysis of Variance

- Comparing > 2 groups of independent observations (each rat only does one amount of jumping).
- Standard procedure: analysis of variance (ANOVA).
- Null hypothesis: all groups have same mean.
- Alternative: "not all means the same", at least one is different from others.

Testing: ANOVA in R

```
rats.aov <- aov(density~group,data=rats)
summary(rats.aov)</pre>
```

Df Sum Sq Mean Sq F value Pr(>F) group 2 7434 3717 7.978 0.0019 ** Residuals 27 12579 466 ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '

- Usual ANOVA table, small P-value: significant result.
- Conclude that the mean bone densities are not all equal.
- Reject null, but not very useful finding.

Which groups are different from which?

- ANOVA really only answers half our questions: it says "there are differences", but doesn't tell us which groups different.
- One possibility (not the best): compare all possible pairs of groups, via two-sample t.
- First pick out each group:

```
rats %>% filter(group=="Control") -> controls
rats %>% filter(group=="Lowjump") -> lows
rats %>% filter(group=="Highjump") -> highs
```

Control vs. low

t.test(controls\$density, lows\$density)

```
Welch Two Sample t-test
```

data: controls\$density and lows\$density
t = -1.0761, df = 16.191, p-value = 0.2977
alternative hypothesis: true difference in means is not equ
95 percent confidence interval:
 -33.83725 11.03725

sample estimates:

mean of x mean of y

601.1 612.5

No sig. difference here.

Control vs. high

t.test(controls\$density, highs\$density)

```
Welch Two Sample t-test
```

```
data: controls$density and highs$density
t = -3.7155, df = 14.831, p-value = 0.002109
alternative hypothesis: true difference in means is not equ
95 percent confidence interval:
-59.19139 -16.00861
sample estimates:
mean of x mean of y
601.1 638.7
```

These are different.

Low vs. high

t.test(lows\$density, highs\$density)

```
Welch Two Sample t-test
```

data: lows\$density and highs\$density
t = -3.2523, df = 17.597, p-value = 0.004525
alternative hypothesis: true difference in means is not equ
95 percent confidence interval:
 -43.15242 -9.24758
sample estimates:
mean of x mean of y
 612.5 638.7

These are different too.

- We just did 3 tests instead of 1.
- So we have given ourselves 3 chances to reject H_0 : all means equal, instead of 1.
- Thus α for this combined test is not 0.05.

John W. Tukey

American statistician, 1915–2000
Big fan of exploratory data analysis
Popularized boxplot
Invented "honestly significant differences"
Invented jackknife estimation
Coined computing term "bit"
Co-inventor of Fast Fourier

Transform

Honestly Significant Differences

- Compare several groups with one test, telling you which groups differ from which.
- Idea: if all population means equal, find distribution of highest sample mean minus lowest sample mean.
- Any means unusually different compared to that declared significantly different.

```
Tukey on rat data
rats.aov <- aov(density~group, data = rats)
summary(rats.aov)</pre>
```

Df Sum Sq Mean Sq F value Pr(>F) group 2 7434 3717 7.978 0.0019 ** Residuals 27 12579 466 ----Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1 TukeyHSD(rats.aov)

Tukey multiple comparisons of means 95% family-wise confidence level

```
Fit: aov(formula = density ~ group, data = rats)
```

\$group

diff lwr upr padj

Why Tukey's procedure better than all t-tests

Look at P-values for the two tests:

Comparison	Tukey	t-tests
Highjump-Control	0.0016	0.0021
Lowjump-Control	0.4744	0.2977
Lowjump-Highjump	0.0298	0.0045

- Tukey P-values (mostly) higher.
- Proper adjustment for doing three t-tests at once, not just one in isolation.

Checking assumptions

ggplot(rats,aes(y = density, x = fct_inorder(group)))+
geom_boxplot()

Assumptions:

Normally distributed data within each group

with equal group SDs.

Normal quantile plots by group

ggplot(rats, aes(sample = density)) + stat_qq() +
stat_qq_line() + facet_wrap(~ group)

The assumptions

- Normally-distributed data within each group
- Equal group SDs.
- These are shaky here because:
 - control group has outliers
 - highjump group appears to have less spread than others.
- Possible remedies (in general):
 - Transformation of response (usually works best when SD increases with mean)
 - If normality OK but equal spreads not, can use Welch ANOVA. (Regular ANOVA like pooled t-test; Welch ANOVA like Welch-Satterthwaite t-test.)
 - Can also use Mood's Median Test (see over). This works for any number of groups.

Mood's median test here

- Find median of all bone densities, regardless of group
- Count up how many observations in each group above or below overall median
- Test association between group and being above/below overall median, using chi-squared test.
- Actually do this using median_test:

median_test(rats, density, group)

```
$grand_median
[1] 621.5
```

\$table

above						
group	above	below				
Control	1	9				
Highjump	10	0				
τ	1	<u> </u>				

Comments

- No doubt that medians differ between groups (not all same).
 This test is equivalent of F-test, not of Tukey.
- To determine which groups differ from which, can compare all possible pairs of groups via (2-sample) Mood's median tests, then adjust P-values by multiplying by number of 2-sample Mood tests done (Bonferroni):

pairwise_median_test(rats, density, group)

#	# A tibble: 3 x 4						
	g1	g2	p_value	adj_p_value			
	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>			
1	Control	Highjump	0.000148	0.000443			
2	Control	Lowjump	0.371	1			
3	Highjump	Lowjump	0.371	1			

Now, lowjump-highjump difference no longer significant.

Welch ANOVA

- For these data, Mood's median test probably best because we doubt both normality and equal spreads.
- When normality OK but spreads differ, Welch ANOVA way to go.

Welch ANOVA done by oneway.test as shown (for illustration):

oneway.test(density~group, data=rats)

One-way analysis of means (not assuming equal variances

data: density and group F = 8.8164, num df = 2.000, denom df = 17.405, p-value = 0

P-value very similar, as expected.

Appropriate Tukey-equivalent here called Games-Howell.

Lives in package PMCMRplus. Install first.

gamesHowellTest(density ~ factor(group), data = rats)

Control Highjump Highjump 0.0056 -Lowjump 0.5417 0.0120

Deciding which test to do

For two or more samples:

