
Basic statistical inference



Packages for this section

library(tidyverse)



Inference for means (from STAB57)

Three kinds of inference for means of normally-distributed data:
▶ One-sample 𝑡: a single sample from a population, estimate

that population’s mean
▶ Two-sample 𝑡: one sample from each of 2 populations,

estimate difference in population means
▶ Matched pairs 𝑡: two paired measurements on same (or

matched) individuals, estimate population mean difference

Two forms of inference for a population parameter:
▶ Confidence interval: “what is the population parameter?”
▶ Hypothesis test: “could the population parameter be equal

to this value?”



Examples:

▶ Blue jays attendances (one-sample)
▶ Kids learning to read (two-sample)
▶ Pain relief (matched pairs)



Confidence interval

▶ You have a sample from some population
▶ Imagine repeated sampling from that population
▶ Procedure that gives an interval containing the true parameter

in 95% (or 90% or 99%) of all possible samples



Hypothesis test

▶ Null hypothesis gives value for population parameter
▶ Alternative hypothesis says how you are trying to prove the

null hypothesis wrong (not equal, greater, less).
▶ Test statistic measures “distance” between data and null

hypothesis
▶ P-value gives probability of observing test statistic as extreme

or more extreme, if the null hypothesis is true.
▶ Reject null hypothesis if P-value small enough (eg smaller

than 0.05).



Why 0.05? This man.

▶ analysis of variance
▶ Fisher information
▶ Linear discriminant analysis
▶ Fisher’s 𝑧-transformation
▶ Fisher-Yates shuffle
▶ Behrens-Fisher problem

Sir Ronald A. Fisher, 1890–1962.



Why 0.05? (2)
▶ From The Arrangement of Field Experiments (1926):

▶ and



𝛼 and errors
▶ Hypothesis test ends with decision:

▶ reject null hypothesis
▶ do not reject null hypothesis.

▶ but decision may be wrong:

Decision
Truth Do not reject reject null
Null true Correct Type I error
Null false Type II error Correct

▶ Either type of error is bad, but for now focus on controlling
Type I error: write 𝛼 = P(type I error), and devise test so
that 𝛼 small, typically 0.05.

▶ That is, if null hypothesis true, have only small chance to
reject it (which would be a mistake).

▶ Worry about type II errors later (when we consider power of
test).



One sample: the Blue Jays attendances

▶ The Toronto Blue Jays’ average home attendance in part of
2015 season was 25,070 (up to May 27 2015, from
baseball-reference.com).

▶ Does that mean the attendance at every game was exactly
25,070? Certainly not. Actual attendance depends on many
things, eg.:

▶ how well the Jays are playing
▶ the opposition
▶ day of week
▶ weather
▶ random chance



Reading the attendances
…as a .csv file:
my_url <- "http://ritsokiguess.site/datafiles/jays15-home.csv"
jays <- read_csv(my_url)
jays

# A tibble: 25 x 21
row game date box team venue opp result runs Oppruns innings wl

<dbl> <dbl> <chr> <chr> <chr> <lgl> <chr> <chr> <dbl> <dbl> <dbl> <chr>
1 82 7 Monda~ boxs~ TOR NA TBR L 1 2 NA 4-3
2 83 8 Tuesd~ boxs~ TOR NA TBR L 2 3 NA 4-4
3 84 9 Wedne~ boxs~ TOR NA TBR W 12 7 NA 5-4
4 85 10 Thurs~ boxs~ TOR NA TBR L 2 4 NA 5-5
5 86 11 Frida~ boxs~ TOR NA ATL L 7 8 NA 5-6
6 87 12 Satur~ boxs~ TOR NA ATL W-wo 6 5 10 6-6
7 88 13 Sunda~ boxs~ TOR NA ATL L 2 5 NA 6-7
8 89 14 Tuesd~ boxs~ TOR NA BAL W 13 6 NA 7-7
9 90 15 Wedne~ boxs~ TOR NA BAL W 4 2 NA 8-7

10 91 16 Thurs~ boxs~ TOR NA BAL W 7 6 NA 9-7
# i 15 more rows
# i 9 more variables: position <dbl>, gb <chr>, winner <chr>, loser <chr>,
# save <chr>, `game time` <time>, Daynight <chr>, attendance <dbl>,
# streak <chr>



Another way
▶ This is a big data set: only 25 observations, but a lot of

variables.
▶ To see the first few values in all the variables, can also use

glimpse:
glimpse(jays)

Rows: 25
Columns: 21
$ row <dbl> 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96~
$ game <dbl> 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 27, 28, 29, 30, 31, 3~
$ date <chr> "Monday, Apr 13", "Tuesday, Apr 14", "Wednesday, Apr 15", ~
$ box <chr> "boxscore", "boxscore", "boxscore", "boxscore", "boxscore"~
$ team <chr> "TOR", "TOR", "TOR", "TOR", "TOR", "TOR", "TOR", "TOR", "T~
$ venue <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA~
$ opp <chr> "TBR", "TBR", "TBR", "TBR", "ATL", "ATL", "ATL", "BAL", "B~
$ result <chr> "L", "L", "W", "L", "L", "W-wo", "L", "W", "W", "W", "W", ~
$ runs <dbl> 1, 2, 12, 2, 7, 6, 2, 13, 4, 7, 3, 3, 5, 7, 7, 3, 10, 2, 3~
$ Oppruns <dbl> 2, 3, 7, 4, 8, 5, 5, 6, 2, 6, 1, 6, 1, 0, 1, 6, 6, 3, 4, 4~
$ innings <dbl> NA, NA, NA, NA, NA, 10, NA, NA, NA, NA, NA, NA, NA, NA, NA~
$ wl <chr> "4-3", "4-4", "5-4", "5-5", "5-6", "6-6", "6-7", "7-7", "8~
$ position <dbl> 2, 3, 2, 4, 4, 3, 4, 2, 2, 1, 4, 5, 3, 3, 3, 3, 5, 5, 5, 5~
$ gb <chr> "1", "2", "1", "1.5", "2.5", "1.5", "1.5", "2", "1", "Tied~
$ winner <chr> "Odorizzi", "Geltz", "Buehrle", "Archer", "Martin", "Cecil~
$ loser <chr> "Dickey", "Castro", "Ramirez", "Sanchez", "Cecil", "Marimo~
$ save <chr> "Boxberger", "Jepsen", NA, "Boxberger", "Grilli", NA, "Gri~
$ `game time` <time> 02:30:00, 03:06:00, 03:02:00, 03:00:00, 03:09:00, 02:41:0~
$ Daynight <chr> "N", "N", "N", "N", "N", "D", "D", "N", "N", "N", "N", "N"~
$ attendance <dbl> 48414, 17264, 15086, 14433, 21397, 34743, 44794, 14184, 15~
$ streak <chr> "-", "--", "+", "-", "--", "+", "-", "+", "++", "+++", "+"~



Attendance histogram

ggplot(jays, aes(x = attendance)) + geom_histogram(bins = 6)
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Comments

▶ Attendances have substantial variability, ranging from just
over 10,000 to around 50,000.

▶ Distribution somewhat skewed to right (but no outliers).
▶ These are a sample of “all possible games” (or maybe “all

possible games played in April and May”). What can we say
about mean attendance in all possible games based on this
evidence?



CI for mean attendance

▶ t.test function does CI and test. Look at CI first:
t.test(jays$attendance)

One Sample t-test

data: jays$attendance
t = 11.389, df = 24, p-value = 3.661e-11
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
20526.82 29613.50

sample estimates:
mean of x
25070.16

▶ From 20,500 to 29,600.



Or, 90% CI
▶ by including a value for conf.level:

t.test(jays$attendance, conf.level = 0.90)

One Sample t-test

data: jays$attendance
t = 11.389, df = 24, p-value = 3.661e-11
alternative hypothesis: true mean is not equal to 0
90 percent confidence interval:
21303.93 28836.39

sample estimates:
mean of x
25070.16

▶ From 21,300 to 28,800. (Shorter, as it should be.)



Comments

▶ Need to say “column attendance within data frame jays”
using $.

▶ 95% CI from about 20,000 to about 30,000.
▶ Not estimating mean attendance well at all!
▶ Generally want confidence interval to be shorter, which

happens if:
▶ SD smaller
▶ sample size bigger
▶ confidence level smaller

▶ Last one is a cheat, really, since reducing confidence level
increases chance that interval won’t contain pop. mean at all!



Another way to access data frame columns

with(jays, t.test(attendance))

One Sample t-test

data: attendance
t = 11.389, df = 24, p-value = 3.661e-11
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
20526.82 29613.50

sample estimates:
mean of x
25070.16



Hypothesis testing for Blue Jays attendances
▶ Previous year’s mean attendance was 29,327, so test to see

whether the mean is different from that in any way (two-sided
test):

t.test(jays$attendance, mu = 29327)

One Sample t-test

data: jays$attendance
t = -1.9338, df = 24, p-value = 0.06502
alternative hypothesis: true mean is not equal to 29327
95 percent confidence interval:
20526.82 29613.50

sample estimates:
mean of x
25070.16

▶ See test statistic −1.93, P-value 0.065.
▶ Do not reject null at 𝛼 = 0.05: no evidence that mean

attendance has changed.



Another example: learning to read

▶ You devised new method for teaching children to read.
▶ Guess it will be more effective than current methods.
▶ To support this guess, collect data.
▶ Want to generalize to “all children in Canada”.
▶ So take random sample of all children in Canada.
▶ Or, argue that sample you actually have is “typical” of all

children in Canada.
▶ Randomization (1): whether or not a child in sample or not

has nothing to do with anything else about that child.
▶ Randomization (2): randomly choose whether each child gets

new reading method (t) or standard one (c).



Reading in data

▶ File at http://ritsokiguess.site/datafiles/drp.txt.
▶ Proper reading-in function is read_delim (check file to see)
▶ Read in thus:

my_url <- "http://ritsokiguess.site/datafiles/drp.txt"
kids <- read_delim(my_url," ")

http://ritsokiguess.site/datafiles/drp.txt


The data (some)

kids

# A tibble: 44 x 2
group score
<chr> <dbl>

1 t 24
2 t 61
3 t 59
4 t 46
5 t 43
6 t 44
7 t 52
8 t 43
9 t 58

10 t 67
# i 34 more rows



Boxplots

ggplot(kids, aes(x = group, y = score)) + geom_boxplot()
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Two kinds of two-sample t-test

▶ Do the two groups have same spread (SD, variance)?
▶ If yes (shaky assumption here), can use pooled t-test.
▶ If not, use Welch-Satterthwaite t-test (safe).

▶ Pooled test derived in STAB57 (easier to derive, but assumes
equal variances).

▶ Welch-Satterthwaite does not assume equality of variances.
▶ Assess (approx) equality of spreads using boxplot.



The (Welch-Satterthwaite) t-test

▶ c (control) before t (treatment) alphabetically, so proper
alternative is “less”.

▶ R does Welch-Satterthwaite test by default
▶ Answer to “does the new reading program really help?”
▶ (in a moment) how to get R to do pooled test?



Welch-Satterthwaite

t.test(score ~ group, data = kids, alternative = "less")

Welch Two Sample t-test

data: score by group
t = -2.3109, df = 37.855, p-value = 0.01319
alternative hypothesis: true difference in means between group c and group t is less than 0
95 percent confidence interval:

-Inf -2.691293
sample estimates:
mean in group c mean in group t

41.52174 51.47619



The pooled t-test

t.test(score ~ group, data = kids,
alternative = "less", var.equal = TRUE)

Two Sample t-test

data: score by group
t = -2.2666, df = 42, p-value = 0.01431
alternative hypothesis: true difference in means between group c and group t is less than 0
95 percent confidence interval:

-Inf -2.567497
sample estimates:
mean in group c mean in group t

41.52174 51.47619



Two-sided test; CI

▶ To do 2-sided test, leave out alternative:
t.test(score ~ group, data = kids)

Welch Two Sample t-test

data: score by group
t = -2.3109, df = 37.855, p-value = 0.02638
alternative hypothesis: true difference in means between group c and group t is not equal to 0
95 percent confidence interval:
-18.67588 -1.23302

sample estimates:
mean in group c mean in group t

41.52174 51.47619



Comments:

▶ P-values for pooled and Welch-Satterthwaite tests very similar
(even though the pooled test seemed inferior): 0.013
vs. 0.014.

▶ Two-sided test also gives CI: new reading program increases
average scores by somewhere between about 1 and 19 points.

▶ Confidence intervals inherently two-sided, so do 2-sided test
to get them.



Pain relief

Some data:



Matched pairs data
▶ Data are comparison of 2 drugs for effectiveness at reducing

pain.
▶ 12 subjects (cases) were arthritis sufferers
▶ Response is #hours of pain relief from each drug.

▶ In reading example, each child tried only one reading method.
▶ But here, each subject tried out both drugs, giving us two

measurements.
▶ Possible because, if you wait long enough, one drug has no

influence over effect of other.
▶ Advantage: focused comparison of drugs. Compare one drug

with another on same person, removes a lot of variability due
to differences between people.

▶ Matched pairs, requires different analysis.

▶ Design: randomly choose 6 of 12 subjects to get drug A first,
other 6 get drug B first.



Paired t test: reading the data

Values aligned in columns:
my_url <- "http://ritsokiguess.site/datafiles/analgesic.txt"
pain <- read_table(my_url)



The data
pain

# A tibble: 12 x 3
subject druga drugb

<dbl> <dbl> <dbl>
1 1 2 3.5
2 2 3.6 5.7
3 3 2.6 2.9
4 4 2.6 2.4
5 5 7.3 9.9
6 6 3.4 3.3
7 7 14.9 16.7
8 8 6.6 6
9 9 2.3 3.8

10 10 2 4
11 11 6.8 9.1
12 12 8.5 20.9



Paired t-test

with(pain, t.test(druga, drugb, paired = T))

Paired t-test

data: druga and drugb
t = -2.1677, df = 11, p-value = 0.05299
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
-4.29941513 0.03274847

sample estimates:
mean difference

-2.133333

▶ P-value is 0.053.
▶ Not quite evidence of difference between drugs.



t-testing the differences
▶ Likewise, you can calculate the differences yourself and do a

1-sample t-test on them.
▶ First calculate a column of differences:

(pain %>% mutate(diff=druga-drugb) -> pain)

# A tibble: 12 x 4
subject druga drugb diff

<dbl> <dbl> <dbl> <dbl>
1 1 2 3.5 -1.5
2 2 3.6 5.7 -2.1
3 3 2.6 2.9 -0.300
4 4 2.6 2.4 0.200
5 5 7.3 9.9 -2.6
6 6 3.4 3.3 0.100
7 7 14.9 16.7 -1.80
8 8 6.6 6 0.600
9 9 2.3 3.8 -1.5

10 10 2 4 -2
11 11 6.8 9.1 -2.3
12 12 8.5 20.9 -12.4



t-test on the differences

▶ then throw them into t.test, testing that the mean is zero,
with same result as before:

with(pain, t.test(diff, mu=0))

One Sample t-test

data: diff
t = -2.1677, df = 11, p-value = 0.05299
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-4.29941513 0.03274847

sample estimates:
mean of x
-2.133333


