Logistic Regression

Logistic regression

When response variable is measured/counted, regression can work well.

But what if response is yes/no, lived/died, success/failure?

- Model probability of success.

Probability must be between 0 and 1 ; need method that ensures this.

- Logistic regression does this. In R , is a generalized linear model with binomial "family":
$g \operatorname{lm}(y \quad \sim \quad x, f a m i l y=" b i n o m i a l ")$
- Begin with simplest case.

Packages

```
library(MASS)
library(tidyverse)
library(marginaleffects)
library(broom)
library(nnet)
library(conflicted)
conflict_prefer("select", "dplyr")
conflict_prefer("filter", "dplyr")
conflict_prefer("rename", "dplyr")
conflict_prefer("summarize", "dplyr")
```


The rats, part 1

Rats given dose of some poison; either live or die:
dose status
0 lived
1 died
2 lived
3 lived
4 died
5 died

Read in:

```
my_url <- "http://ritsokiguess.site/datafiles/rat.txt"
rats <- read_delim(my_url, " ")
rats
# A tibble: 6 x 2
    dose status
    <dbl> <chr>
O lived
2 1 died
3 lived
3 lived
5 4 died
6 5 died
```


Basic logistic regression

- Make response into a factor first:

```
rats2 <- rats %>% mutate(status = factor(status))
rats2
```

\# A tibble: 6 x 2
dose status
<dbl> <fct>
10 lived
21 died
32 lived
43 lived
54 died
65 died
$>$ then fit model:
status. 1 <- glm(status ~ dose, family = "binomial", data =

Output

summary (status.1)

Call:
glm(formula $=$ status \sim dose, family $=$ "binomial", data $=r a$
Coefficients:

	Estimate	Std. Error z	value	$\operatorname{Pr}(>\|z\|)$
(Intercept)	1.6841	1.7979	0.937	0.349
dose	-0.6736	0.6140	-1.097	0.273

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 8.3178 on 5 degrees of freedom Residual deviance: 6.7728 on 4 degrees of freedom AIC: 10.773

Number of Fisher Scoring iterations: 4

Interpreting the output

- Like (multiple) regression, get tests of significance of individual x 's
- Here not significant (only 6 observations).
- "Slope" for dose is negative, meaning that as dose increases, probability of event modelled (survival) decreases.

Output part 2: predicted survival probs

```
cbind(predictions(status.1)) %>%
```

 select(dose, estimate, conf.low, conf.high)
 dose estimate conf.low conf.high
 100.84344900 .1370957920 .9945564
$2 \quad 10.73311220 .1731864790 .9729896$
$3 \quad 20.58341870 .1688475610 .9061463$
$4 \quad 30.41658130 .0938536800 .8311524$
$5 \quad 40.26688780 .0270104130 .8268135$
$6 \quad 50.15655100 .0054435890 .8629042$

On a graph

plot_predictions(status.1, condition = "dose")

The rats, more

- More realistic: more rats at each dose (say 10).
- Listing each rat on one line makes a big data file.
- Use format below: dose, number of survivals, number of deaths.

dose	lived died	
0	10	0
1	7	3
2	6	4
3	4	6
4	2	8
5	1	9

- 6 lines of data correspond to 60 actual rats.
> Saved in rat2.txt.

These data

```
my_url <- "http://ritsokiguess.site/datafiles/rat2.txt"
rat2 <- read_delim(my_url, " ")
rat2
# A tibble: 6 x 3
    dose lived died
    <dbl> <dbl> <dbl>
\begin{tabular}{rrrr}
1 & 0 & 10 & 0 \\
2 & 1 & 7 & 3 \\
3 & 2 & 6 & 4 \\
4 & 3 & 4 & 6 \\
5 & 4 & 2 & 8 \\
6 & 5 & 1 & 9
\end{tabular}
```


Create response matrix:

- Each row contains multiple observations.
- Create two-column response:
- \#survivals in first column,
- \#deaths in second.

```
response <- with(rat2, cbind(lived, died))
response
```

lived died

$[1]$,	10	0
$[2]$,	7	3
$[3]$,	6	4
$[4]$,	4	6
$[5]$,	2	8
$[6]$,	1	9

- Response is R matrix:
class (response)

Fit logistic regression

- using response you just made:
rat2.1 <- glm(response ~ dose, family = "binomial", data =

Output

```
summary(rat2.1)
```

Call:
glm(formula $=$ response \sim dose, family $=$ "binomial", data $=$
Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$

| (Intercept) | 2.3619 | 0.6719 | 3.515 | 0.000439 |
| :--- | ---: | ---: | ---: | ---: | ***

Signif. codes: $0{ }^{\prime * * * '} 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 '
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 27.530 on 5 degrees of freedom Residual deviance: 2.474 on 4 degrees of freedom AIC: 18.94

Predicted survival probs

```
new <- datagrid(model = rat2.1, dose = 0:5)
cbind(predictions(rat2.1, newdata = new)) %>%
    select(estimate, dose, conf.low, conf.high)
```

1	0.9138762	0	0.73983042	67
2	0.8048905		0.61695841	0.913539
3	. 6159474	2	0.44876099	0.75959
	0.3840526	3	0.24040837	0.55123
	0.1951095		0.08646093	0.383
	. 086123		0.02463288	

On a picture, attempt 1

plot_predictions(rat2.1, condition = "dose")
Error in `model_data[, rn, drop = FALSE]`:
! Can't subset columns that don't exist.
x Column `response` doesn't exist.

On a picture, attempt 2

```
cbind(predictions(rat2.1, newdata = new)) %>%
    select(estimate, conf.low, conf.high, dose) %>%
    ggplot(aes(x = dose, y = estimate,
        ymin = conf.low, ymax = conf.high)) +
        geom_line() + geom_ribbon(alpha = 0.2)
```


Comments

- Significant effect of dose.
$>$ Effect of larger dose is to decrease survival probability ("slope" negative; also see in decreasing predictions.)
- Confidence intervals around prediction narrower (more data).

Multiple logistic regression

- With more than one x, works much like multiple regression.
- Example: study of patients with blood poisoning severe enough to warrant surgery. Relate survival to other potential risk factors.
- Variables, $1=$ present, $0=$ absent:
survival (death from sepsis=1), response
shock
- malnutrition
- alcoholism
- age (as numerical variable)
- bowel infarction
$>$ See what relates to death.

Read in data
my_url <-
"http://ritsokiguess.site/datafiles/sepsis.txt"
sepsis <- read_delim(my_url, " ")
sepsis
\# A tibble: 106 x 6
death shock malnut alcohol age bowelinf <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1	0	0	0	0	56	0
2	0	0	0	0	80	0
3	0	0	0	0	61	0
4	0	0	0	0	26	0
5	0	0	0	0	53	0
6	1	0	1	0	87	0
7	0	0	0	0	21	0
8	1	0	0	1	69	0
9	0	0	0	0	57	0
10	0	0	1	0	76	0

Make sure categoricals really are

```
sepsis %>%
    mutate(across(-age, \(x) factor(x))) -> sepsis
```


The data (some)

Fit model

```
sepsis.1 <- glm(death ~ shock + malnut + alcohol + age +
    bowelinf,
family = "binomial",
data = sepsis
)
```


Output part 1

summary(sepsis.1)

Call:

```
glm(formula = death ~ shock + malnut + alcohol + age + bowe
    family = "binomial", data = sepsis)
```

Coefficients:

	Estimate Std. Error z value $\operatorname{Pr}(>\|z\|)$				
(Intercept)	-9.75391	2.54170	-3.838	0.000124	
shock1	3.67387	1.16481	3.154	0.001610	
malnut1	1.21658	0.72822	1.671	0.094798	
alcohol1	3.35488	0.98210	3.416	0.000635	
age	0.09215	0.03032	3.039	0.002374	
bowelinf1	2.79759	1.16397	2.403	0.0162	

Signif. codes: $0{ }^{\prime * * * '} 0.001{ }^{\prime * * '} 0.01$ '*' 0.05 '.' $0.1{ }^{\prime}$

Removing malnut

$>$ Everything significant now.

Comments

- Most of the original x 's helped predict death. Only malnut seemed not to add anything.
- Removed malnut and tried again.
- Everything remaining is significant (though bowelinf actually became less significant).
- All coefficients are positive, so having any of the risk factors (or being older) increases risk of death.

Predictions from model without "malnut"

\rightarrow A few (rows of original dataframe) chosen "at random":

```
sepsis %>% slice(c(4, 1, 2, 11, 32)) -> new
new
# A tibble: 5 x 6
    death shock malnut alcohol age bowelinf
    <fct> <fct> <fct> <fct> <dbl> <fct>
\begin{tabular}{lllllll}
1 & 0 & 0 & 0 & 0 & 26 & 0 \\
2 & 0 & 0 & 0 & 0 & 56 & 0 \\
3 & 0 & 0 & 0 & 0 & 80 & 0 \\
4 & 1 & 0 & 0 & 1 & 66 & 1 \\
5 & 1 & 0 & 0 & 1 & 49 & 0
\end{tabular}
```

cbind(predictions(sepsis.2, newdata = new)) \%>\%
select(estimate, conf.low, conf.high, shock:bowelinf)

	estimate	conf.low	conf.high shock malnut	alcohol		
1	0.001415347	$6.272642 \mathrm{e}-05$	0.03103047	0	0	0
2	0.020552383	$4.102504 \mathrm{e}-03$	0.09656596	0	0	0

Comments

- Survival chances pretty good if no risk factors, though decreasing with age.
- Having more than one risk factor reduces survival chances dramatically.
- Usually good job of predicting survival; sometimes death predicted to survive.

Another way to assess effects

of age:
new <- datagrid(model $=$ sepsis.2, age $=\operatorname{seq}(30,70,10)$) new
death shock alcohol bowelinf age

1	0	0	0	0	30
2	0	0	0	0	40
3	0	0	0	0	50
4	0	0	0	0	60
5	0	0	0	0	70

Assessing age effect

```
cbind(predictions(sepsis.2, newdata = new)) %>%
    select(estimate, shock:age)
```

	r	estimate	shock	alcohol	bowelinf
1	0.002026053	0	0	0	30
2	0.004960283	0	0	0	40
3	0.012092515	0	0	0	50
4	0.029179226	0	0	0	60
5	0.068729752	0	0	0	70

Assessing shock effect

```
new <- datagrid(shock = c(0, 1), model = sepsis.2)
new
```

	death	alcohol	age	bowelinf	shock
1	0	0	51.28302	0	0
2	0	0	51.28302	0	1

cbind (predictions(sepsis.2, newdata = new)) $\%>\%$
select(estimate, death:shock)

	estimate death	alcohol	age bowelinf	shock		
1	0.01354973	0	0	51.28302	0	0
2	0.35742607	0	0	51.28302	0	1

Assessing proportionality of odds for age

- An assumption we made is that log-odds of survival depends linearly on age.
- Hard to get your head around, but basic idea is that survival chances go continuously up (or down) with age, instead of (for example) going up and then down.
- In this case, seems reasonable, but should check:

Residuals vs. age

$$
\begin{aligned}
& \text { sepsis. } 2 \%>\% \text { augment(sepsis) \%>\% } \\
& \text { ggplot(aes(x = age, y = .resid, colour = death)) + } \\
& \text { geom_point() }
\end{aligned}
$$

Comments

- No apparent problems overall.
- Confusing "line" across: no risk factors, survived.

Probability and odds

For probability p, odds is $p /(1-p)$:

Prob	Odds	Log-odds	Words
0.5	$0.5 / 0.5=1.00$	0.00	even money
0.1	$0.1 / 0.9=0.11$	-2.20	9 to 1
0.4	$0.4 / 0.6=0.67$	-0.41	1.5 to 1
0.8	$0.8 / 0.2=4.00$	1.39	4 to 1 on

- Gamblers use odds: if you win at 9 to 1 odds, get original stake back plus 9 times the stake.
- Probability has to be between 0 and 1
- Odds between 0 and infinity
- Log-odds can be anything: any log-odds corresponds to valid probability.

Odds ratio

- Suppose 90 of 100 men drank wine last week, but only 20 of 100 women.
- Prob of man drinking wine $90 / 100=0.9$, woman $20 / 100=0.2$.
- Odds of man drinking wine $0.9 / 0.1=9$, woman $0.2 / 0.8=0.25$.
- Ratio of odds is $9 / 0.25=36$.
- Way of quantifying difference between men and women: "odds of drinking wine 36 times larger for males than females' '.

Sepsis data again

\rightarrow Recall prediction of probability of death from risk factors:

\# i 96 more rows

Multiplying the odds

- Can interpret slopes by taking "exp" of them. We ignore intercept.

```
sepsis.2.tidy %>%
    select(term, exp_coeff)
# A tibble: 5 x 2
    term exp_coeff
    <chr> <dbl>
1 (Intercept) 0.000137
2 shock1 40.5
3 alcohol1 24.2
4 age 1.09
5 bowelinf1 10.9
```

 mutate (exp_coeff=exp(estimate)) \%>\%

Interpretation

\# A tibble: 5 x 2			
term	exp_coeff		
	<chr>	\quad	<dbl>
---:	:---		

- These say "how much do you multiply odds of death by for increase of 1 in corresponding risk factor?" Or, what is odds ratio for that factor being 1 (present) vs. 0 (absent)?
$>$ Eg. being alcoholic vs. not increases odds of death by 24 times
\rightarrow One year older multiplies odds by about 1.1 times. Over 40 years, about $1.09^{40}=31$ times.

Odds ratio and relative risk

$>$ Relative risk is ratio of probabilities.

- Above: 90 of 100 men (0.9) drank wine, 20 of 100 women (0.2).
$>$ Relative risk $0.9 / 0.2=4.5$. (odds ratio was 36).
- When probabilities small, relative risk and odds ratio similar.
- Eg. prob of man having disease 0.02 , woman 0.01 .
- Relative risk $0.02 / 0.01=2$.

Odds ratio vs. relative risk

$>$ Odds for men and for women:

```
(od1 <- 0.02 / 0.98) # men
```

[1] 0.02040816
(od2 <- 0.01 / 0.99) \# women
[1] 0.01010101
$>$ Odds ratio
od1 / od2
[1] 2.020408
Very close to relative risk of 2.

More than 2 response categories

With 2 response categories, model the probability of one, and prob of other is one minus that. So doesn't matter which category you model.

- With more than 2 categories, have to think more carefully about the categories: are they
- ordered: you can put them in a natural order (like low, medium, high)
- nominal: ordering the categories doesn't make sense (like red, green, blue).
- R handles both kinds of response; learn how.

Ordinal response: the miners

- Model probability of being in given category or lower.
- Example: coal-miners often suffer disease pneumoconiosis. Likelihood of disease believed to be greater among miners who have worked longer.
- Severity of disease measured on categorical scale: none, moderate, severe.

Miners data

- Data are frequencies:

Exposure None Moderate Severe

5.8	98	0	0
15.0	51	2	1
21.5	34	6	3
27.5	35	5	8
33.5	32	10	9
39.5	23	7	8
46.0	12	6	10
51.5	4	2	5

Reading the data

Data in aligned columns with more than one space between, so:

```
my_url <- "http://ritsokiguess.site/datafiles/miners-tab.ty
freqs <- read_table(my_url)
```


The data

freqs				
\# A tibble: 8 x 4				
	Exposure	None	Moderate	Severe
	<dbl>	<dbl>	<dbl>	<dbl>
1	5.8	98	0	0
2	15	51	2	1
3	21.5	34	6	3
4	27.5	35	5	8
5	33.5	32	10	9
6	39.5	23	7	8
7	46	12	6	10
8	51.5	4	2	5

Tidying

freqs \% $>\%$
pivot_longer(-Exposure, names_to = "Severity", values_to mutate(Severity = fct_inorder(Severity)) -> miners

Result

miners			
\# A tibble: 24 x 3			
Exposure		Severity	Freq
	<dbl>	<fct>	<dbl>
1	5.8	None	98
2	5.8	Moderate	0
3	5.8	Severe	0
4	15	None	51
5	15	Moderate	2
6	15	Severe	1
7	21.5	None	34
8	21.5	Moderate	6
9	21.5	Severe	3
10	27.5	None	35
\# i 14 more rows			

Plot proportions against exposure

miners \%>\%
group_by (Exposure) \%>\%
mutate(proportion $=$ Freq / sum(Freq)) -> prop
prop
\# A tibble: 24 x 4
\# Groups: Exposure [8]
Exposure Severity Freq proportion
<dbl> <fct> <dbl> <dbl>
1
5.8 None
$98 \quad 1$
25.8 Moderate 00

3	5.8	Severe	0	0
4	15	None	51	0.944
5	15	Moderate	2	0.0370
6	15	Severe	1	0.0185
7	21.5	None	34	0.791
8	21.5	Moderate	6	0.140
9	21.5	Severe	3	0.0698

Reminder of data setup

miners			
\# A tibble: 24 x 3			
Exposure <dbl>		Severity	Freq
		<fct>	<dbl>
1	5.8	None	98
2	5.8	Moderate	0
3	5.8	Severe	0
4	15	None	51
5	15	Moderate	2
6	15	Severe	1
7	21.5	None	34
8	21.5	Moderate	6
9	21.5	Severe	3
10	27.5	None	35
\# i	14 more	rows	

Fitting ordered logistic model

Use function polr from package MASS. Like glm.

```
sev.1 <- polr(Severity ~ Exposure,
    weights = Freq,
    data = miners
)
```


Output: not very illuminating

```
sev.1 <- polr(Severity ~ Exposure,
    weights = Freq,
    data = miners,
    Hess = TRUE
)
```

summary (sev.1)

Call:
polr(formula $=$ Severity \sim Exposure, data $=$ miners, weights
Hess = TRUE)

Coefficients:
Value Std. Error t value

Exposure $0.0959 \quad 0.011948 .034$

Intercepts:

	Value	Std. Error t value	
None\|Moderate	3.9558	0.4097	9.6558

Does exposure have an effect?

Fit model without Exposure, and compare using anova. Note 1 for model with just intercept:

```
sev.0 <- polr(Severity ~ 1, weights = Freq, data = miners)
anova(sev.0, sev.1)
```

Likelihood ratio tests of ordinal regression models
Response: Severity

	Model	Resid. df	Resid. Dev	Test	Df LR stat.	
1	1	369	505.1621			
2	Exposure	368	416.9188	1	vs 2	188.24324
	Pr(Chi)					
1						
2	0					

Exposure definitely has effect on severity of disease.

Another way

What (if anything) can we drop from model with exposure?

```
drop1(sev.1, test = "Chisq")
```

Single term deletions
Model:
Severity ~ Exposure

$$
\text { Df } \quad \text { AIC } \quad \text { LRT } \quad \operatorname{Pr}(>\mathrm{Chi})
$$

<none> 422.92
Exposure $1509.1688 .243<2.2 \mathrm{e}-16$ ***
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

- Nothing. Exposure definitely has effect.

Predicted probabilities $1 / 2$

Predicted probabilities 2/2

Plot of predicted probabilities

plot_predictions(model = sev.1, condition = c("Exposure", geom_point(data = prop, aes(x = Exposure, y = proportion

The graph

Comments

- Model appears to match data well enough.
- As exposure goes up, prob of None goes down, Severe goes up (sharply for high exposure).
- So more exposure means worse disease.

Unordered responses

- With unordered (nominal) responses, can use generalized logit.
- Example: 735 people, record age and sex (male 0, female 1), which of 3 brands of some product preferred.

Data in mlogit.csv separated by commas (so read_csv will work):

```
my_url <- "http://ritsokiguess.site/datafiles/mlogit.csv"
brandpref <- read_csv(my_url)
```


The data (some)

brandpref
\# A tibble: 735 x 3
brand sex age
<dbl> <dbl> <dbl>

1 | 1 | 1 | 0 | 24 |
| :--- | :--- | :--- | :--- |

2	1	0	26

3	1	0	26

4	1	1	27

5	1	1	27
6	3	1	27

7	1	0	27
8	1	0	27
9	1	1	27
10	1	0	27

\# i 725 more rows

Bashing into shape

$>$ sex and brand not meaningful as numbers, so turn into factors:

```
brandpref %>%
    mutate(sex = ifelse(sex == 1, "female", "male"),
    sex = factor(sex),
    brand = factor(brand)
    ) -> brandpref
```

brandpref \%>\% count(sex)
\# A tibble: 2 x 2
sex
n
<fct> <int>
1 female 466
2 male 269

Fitting model

We use multinom from package nnet. Works like polr.

```
library(nnet)
levels(brandpref$sex)
[1] "female" "male"
brands.1 <- multinom(brand ~ age + sex, data = brandpref)
# weights: 12 (6 variable)
initial value 807.480032
iter 10 value 702.990572
final value 702.970704
converged
```


Can we drop anything?

- Unfortunately drop1 seems not to work:
drop1(brands.1, test = "Chisq", trace = 0)
trying - age
Error in if (trace) \{: argument is not interpretable as log
$>$ So, fall back on fitting model without what you want to test, and comparing using anova.

Do age/sex help predict brand? $1 / 3$

Fit models without each of age and sex:

```
brands.2 <- multinom(brand ~ age, data = brandpref)
# weights: 9 (4 variable)
initial value 807.480032
iter 10 value 706.796323
iter 10 value 706.796322
final value 706.796322
converged
brands.3 <- multinom(brand ~ sex, data = brandpref)
# weights: 9 (4 variable)
initial value 807.480032
final value 791.861266
converged
```


Do age/sex help predict brand? 2/3

 anova(brands.2, brands.1)Likelihood ratio tests of Multinomial Models

Response: brand
Model Resid. df Resid. Dev Test Df LR stat.

1	age	1466	1413.593		
2	age + sex	1464	1405.941	1	vs 2

1
20.02180496
anova(brands.3, brands.1)
Likelihood ratio tests of Multinomial Models

Response: brand
Model Resid. df Resid. Dev Test Df LR stat.
$1 \quad$ sex $\quad 1466 \quad 1583.723$

Do age/sex help predict brand? 3/3

$>$ age definitely significant (second anova)
$>$ sex significant also (first anova), though P-value less dramatic

Keep both.

- Expect to see a large effect of age, and a smaller one of sex.

Another way to build model

\rightarrow Start from model with everything and run step:

```
step(brands.1, trace = 0)
trying - age
trying - sex
Call:
multinom(formula = brand ~ age + sex)
```

Coefficients:

	(Intercept)	age	sexmale
2	-11.25127	0.3682202	-0.5237736
3	-22.25571	0.6859149	-0.4658215

Residual Deviance: 1405.941
AIC: 1417.941

- Final model contains both age and sex so neither could be removed.

Making predictions

Find age 5-number summary, and the two sexes:
summary (brandpref)

brand	sex		age	
$1: 207$	female:466	Min. $: 24.0$		
$2: 307$	male $: 269$	1st Qu. $: 32.0$		
$3: 221$		Median $: 32.0$		
		Mean $: 32.9$		
		3rd Qu. $: 34.0$		
		Max. $\quad: 38.0$		

Space the ages out a bit for prediction (see over).

Combinations

```
new <- datagrid(age = seq(24, 30, 2),
    sex = c("female", "male"), model = brands..
new
```

	brand	age	sex
1	2	24	female
2	2	24	male
3	2	26	female
4	2	26	male
5	2	28	female
6	2	28	male
7	2	30	female
8	2	30	male

The predictions

```
cbind(predictions(brands.1, newdata = new)) %>%
    select(group, estimate, age, sex) %>%
    pivot_wider(names_from = group, values_from = estimate)
# A tibble: 8 x 5
        age sex `1` `2` `3`
    <dbl> <fct> <dbl> <dbl> <dbl>
1 24 female 0.915 0.0819 0.00279
2 24 male 0.948 0.0502 0.00181
3 26 female 0.834 0.156 0.0100
4 26 male 0.894 0.0990 0.00674
5 28 female 0.696 0.271 0.0329
6 28 male 0.793 0.183 0.0236
7 30 female 0.500 0.407 0.0933
8 30 male 0.625 0.302 0.0732
```


Comments

- Young males prefer brand 1, but older males prefer brand 3 .
- Females similar, but like brand 1 less and brand 2 more.
- A clear brand effect, but the sex effect is less clear.

Making a plot

- I thought plot_predictions doesn't work as we want, but I was (sort of) wrong about that:
plot_predictions(brands.1, condition = c("age", "brand", type = "probs")

The graph I had before

g

Digesting the plot

- Brand vs. age: younger people (of both genders) prefer brand 1 , but older people (of both genders) prefer brand 3.
(Explains significant age effect.)
- Brand vs. sex: females (solid) like brand 1 less than males (dashed), like brand 2 more (for all ages).
- Not much brand difference between genders (solid and dashed lines of same colours close), but enough to be significant.
- Model didn't include interaction, so modelled effect of gender on brand same for each age, modelled effect of age same for each gender. (See also later.)

Alternative data format

Summarize all people of same brand preference, same sex, same age on one line of data file with frequency on end: brandpref
\# A tibble: 735 x 3
brand sex age
<fct> <fct> <dbl>
11 male 24

21 male 26
31 male 26
41 female 27
51 female 27
63 female 27
71 male 27
81 male 27
91 female 27
101 male 27
\# i 725 more rows

Getting alternative data format

```
brandpref %>%
group_by(age, sex, brand) %>%
summarize(Freq = n()) %>%
ungroup() -> b
b
```

\# A tibble: 65 x 4

age sex	brand Freq
<dbl> $<f c t>$	<fct> <int>

124 male $1 \quad 1$
226 male $1 \quad 2$
327 female $1 \quad 4$
427 female 31
527 male 14
628 female $1 \quad 6$
728 female 2
828 female 31
928 male $1 \quad 4$
$10 \quad 78$ malo 3

Fitting models, almost the same

- Just have to remember weights to incorporate frequencies.
- Otherwise multinom assumes you have just 1 obs on each line!
\rightarrow Again turn (numerical) sex and brand into factors:
b \% $\%$
mutate(sex = factor(sex)) \% \% \%
mutate(brand = factor(brand)) -> bf
b. 1 <- multinom(brand ~ age + sex, data = bf, weights = Fre
b. 2 <- multinom(brand ~ age, data = bf, weights = Freq)

P-value for sex identical

Same P -value as before, so we haven't changed anything important.

Trying interaction between age and gender

 brands. 4 <- update(brands.1, . ~ . + age:sex)\# weights: 15 (8 variable)
initial value 807.480032
iter 10 value 703.191146
iter 20 value 702.572260
iter 30 value 702.570900
iter 30 value 702.570893
iter 30 value 702.570893
final value 702.570893
converged
anova(brands.1, brands.4)

Likelihood ratio tests of Multinomial Models

Response: brand
Model Resid. df Resid. Dev Test Df
1
$\begin{array}{lll}\text { age }+ \text { sex } & 1464 & 1405.941\end{array}$

Make graph again

plot_predictions(brands.4, condition = c("age", "brand", "s type = "probs", draw = FALSE) \%>\%
ggplot(aes(x = age, y = estimate, colour = group, linetype = sex)) +
geom_line() -> g4

Not much difference in the graph

Compare model without interaction

