Multivariate Analysis of Variance

Multivariate analysis of variance

- Standard ANOVA has just one response variable.
- What if you have more than one response?
- Try an ANOVA on each response separately.
- But might miss some kinds of interesting dependence between the responses that distinguish the groups.

Packages

library(car) # may need to install first library(tidyverse) library(MVTests) # also may need to install

Small example

- Measure yield and seed weight of plants grown under 2 conditions: low and high amounts of fertilizer.
- Data (fertilizer, yield, seed weight):

url <- "http://ritsokiguess.site/datafiles/manova1.txt" hilo <- read_delim(url, " ")</pre>

• 2 responses, yield and seed weight.

The data

hilo

#	A	tibble: 8	3 x 3	
	fe	ertilizer	yield	weight
	<(chr>	<dbl></dbl>	<dbl></dbl>
1	10	WC	34	10
2	10	WC	29	14
3	10	WC	35	11
4	10	WC	32	13
5	h	igh	33	14
6	h	igh	38	12
7	h	igh	34	13
8	h	igh	35	14

Boxplot for yield for each fertilizer group

ggplot(hilo, aes(x = fertilizer, y = yield)) + geom_boxplot()

Yields overlap for fertilizer groups.

Boxplot for weight for each fertilizer group

ggplot(hilo, aes(x = fertilizer, y = weight)) + geom_boxplot()

Weights overlap for fertilizer groups.

ANOVAs for yield and weight

```
hilo.y <- aov(yield ~ fertilizer, data = hilo)
summary(hilo.y)</pre>
```

Df Sum Sq Mean Sq F value Pr(>F) fertilizer 1 12.5 12.500 2.143 0.194 Residuals 6 35.0 5.833

hilo.w <- aov(weight ~ fertilizer, data = hilo)
summary(hilo.w)</pre>

Df Sum Sq Mean Sq F value Pr(>F) fertilizer 1 3.125 3.125 1.471 0.271 Residuals 6 12.750 2.125

Neither response depends significantly on fertilizer. But...

Plotting both responses at once

- Have two response variables (not more), so can plot the response variables against *each other*, labelling points by which fertilizer group they're from.
- First, create data frame with points (31, 14) and (38, 10) (why? Later):

• Then plot data as points, and add line through points in d:

The plot

Comments

- Graph construction:
 - Joining points in d by line.
 - geom_line inherits colour from aes in ggplot.
 - Data frame d has no fertilizer (previous colour), so have to unset.
- Results:
 - High-fertilizer plants have both yield and weight high.
 - True even though no sig difference in yield or weight individually.
 - Drew line separating highs from lows on plot.

MANOVA finds multivariate differences

• Is difference found by diagonal line significant? MANOVA finds out.

```
response <- with(hilo, cbind(yield, weight))
hilo.1 <- manova(response ~ fertilizer, data = hilo)
summary(hilo.1)</pre>
```

```
Df Pillai approx F num Df den Df Pr(>F)
fertilizer 1 0.80154 10.097 2 5 0.01755 *
Residuals 6
---
Signif. codes:
0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

• Yes! Difference between groups is *diagonally*, not just up/down (weight) or left-right (yield). The *yield-weight combination* matters.

Strategy

- Create new response variable by gluing together columns of responses, using cbind.
- Use manova with new response, looks like 1m otherwise.
- With more than 2 responses, cannot draw graph. What then?
- If MANOVA test significant, cannot use Tukey. What then?
- Use *discriminant analysis* (of which more later).

Another way to do MANOVA

using Manova from package car:

```
hilo.2.lm <- lm(response ~ fertilizer, data = hilo)
hilo.2 <- Manova(hilo.2.lm)
summary(hilo.2)
```

Type II MANOVA Tests: Sum of squares and products for error: yield weight vield 35 -18.00 weight -18 12.75 Term: fertilizer Sum of squares and products for the hypothesis: vield weight vield 12.50 6.250 weight 6.25 3.125 Multivariate Tests: fertilizer Df test stat approx F num Df den Df Pr(>F) Pillai 1 0.801542 10.09714 2 5 0.017546 *
 Wilks
 1
 0.198458
 10.09714
 2
 5
 0.017546

 Hotelling-Lawley
 1
 4.038855
 10.09714
 2
 5
 0.017546

 Roy
 1
 4.038855
 10.09714
 2
 5
 0.017546 *
 ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Comments

- Same result as small-m manova.
- Manova will also do repeated measures, coming up later.

Assumptions

- normality of each response variable within each treatment group
 - this is actually multivariate normality, with correlations
- equal spreads: each response variable has same variances and correlations (with other response variables) within each treatment group. Here:
 - yield has same spread for low and high fertilizer
 - weight has same spread for low and high fertilizer
 - correlation between yield and weight is same for low and high fertilizer
- test equal spread using $\operatorname{Box's} M$ test
 - ▶ a certain amount of unequalness is OK, so only a concern if P-value from *M*-test is very small (eg. less than 0.001).

Assumptions for yield-weight data

For normal quantile plots, need "extra-long" with all the data values in one column:

There are only four observations per response variable - treatment group combination, so graphs are not very informative (over):

The plots

g

Box M test

- Make sure package MVTests loaded first.
- inputs:
 - the response matrix (or, equivalently, the response-variable columns from your dataframe)
 - the column with the grouping variable in it (most easily gotten with \$).

```
library(MVTests)
# hilo %>% select(yield, weight) -> numeric_values
summary(BoxM(response, hilo$fertilizer))
```

Box's M Test

Chi-Squared Value = 1.002964 , df = 3 and p-value: 0.801

• No problem at all with unequal spreads.

Another example: peanuts

- Three different varieties of peanuts (mysteriously, 5, 6 and 8) planted in two different locations.
- Three response variables: y, smk and w.

u <- "http://ritsokiguess.site/datafiles/peanuts.txt"
peanuts.orig <- read_delim(u, " ")</pre>

The data

peanuts.orig

A tibble: 12 x 6

	obs	location	variety	У	\mathtt{smk}	W
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	1	1	5	195.	153.	51.4
2	2	1	5	194.	168.	53.7
3	3	2	5	190.	140.	55.5
4	4	2	5	180.	121.	44.4
5	5	1	6	203	157.	49.8
6	6	1	6	196.	166	45.8
7	7	2	6	203.	166.	60.4
8	8	2	6	198.	162.	54.1
9	9	1	8	194.	164.	57.8
10	10	1	8	187	165.	58.6
11	11	2	8	202.	167.	65
12	12	2	8	200	174.	67.2

Setup for analysis

```
peanuts.orig %>%
  mutate(
    location = factor(location),
    variety = factor(variety)
  ) -> peanuts
peanuts
```

```
A tibble: 12 \times 6
#
     obs location variety
                                   smk
                              V
                                           W
   <dbl> <fct>
               <fct>
                          <dbl> <dbl> <dbl>
                           195. 153. 51.4
 1
       1 1
                  5
 2
       2 1
                  5
                           194. 168. 53.7
 3
                  5
       3 2
                           190. 140. 55.5
                  5
4
       42
                           180. 121. 44.4
 5
       5 1
                  6
                           203 157. 49.8
 6
       6 1
                  6
                           196. 166 45.8
 7
       7 2
                  6
                           203.
                                 166.
                                        60.4
```

Analysis (using manova)

peanuts.1 <- manova(response ~ location * variety, data = pear summary(peanuts.1)

	Df	Pillai	approx F	num Df	den Df	Pr(>F)
location	1	0.89348	11.1843	3	4	0.020502
variety	2	1.70911	9.7924	6	10	0.001056
<pre>location:variety</pre>		1.29086	3.0339	6	10	0.058708
Residuals	6					
location	*					
variety	**					
location:variety						
Residuals						
Signif. codes:						
0 '***' 0.001 '**	*' (0.01 '*'	0.05 '.'	0.1 '	' 1	

Comments

- Interaction not quite significant, but main effects are.
- Combined response variable (y, smk, w) definitely depends on location and on variety
- Weak dependence of (y, smk, w) on the location-variety combination.
- Understanding that dependence beyond our scope right now.

Comments

- this time there are only six observations per location and four per variety, so normality is still difficult to be confident about
- y at location 1 seems to be the worst for normality (long tails / outliers), and maybe y at location 2 is skewed left, but the others are not bad
- there is some evidence of unequal spread (slopes of lines), but is it bad enough to worry about? (Box M-test, over).

Assessing normality

Box's M tests

• One for location, one for variety:

summary(BoxM(response, peanuts\$location))

Box's M Test

Chi-Squared Value = 12.47797, df = 6 and p-value: 0.0521

summary(BoxM(response, peanuts\$variety))

Box's M Test

Chi-Squared Value = 10.56304 , df = 12 and p-value: 0.567

- Neither of these P-values is low enough to worry about. (Remember, the P-value here has to be *really* small to indicate a problem.)
- Box's M test does not work well (and can fail to work at all) if the sample sizes are too small.

Addendum: Box's M for interaction

Create a combo column that is the combination of location and variety:

peanuts %	%<%	mutate(combo	=				
		str_	_c(location,	"-",	<pre>variety))</pre>	->	d

d

#

```
A tibble: 12 x 7
```

	obs	location	variety	У	\mathtt{smk}	W	combo
	<dbl></dbl>	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>
1	1	1	5	195.	153.	51.4	1-5
2	2	1	5	194.	168.	53.7	1-5
3	3	2	5	190.	140.	55.5	2-5
4	4	2	5	180.	121.	44.4	2-5
5	5	1	6	203	157.	49.8	1-6
6	6	1	6	196.	166	45.8	1-6
7	7	2	6	203.	166.	60.4	2-6
8	8	2	6	198.	162.	54.1	2-6

Then run Box's M test as usual:

summary(BoxM(response, d\$combo))

Box's M Test

Chi-Squared Value = -Inf , df = 30 and p-value: 1

except that the result makes no sense. This is because there are only two observations per location-variety combination, which is not enough to estimate anything, and so the test no longer works.