
Power of hypothesis tests



Packages

library(tidyverse)



Errors in testing

What can happen:

Decision
Truth Do not reject Reject null
Null true Correct Type I error
Null false Type II error Correct

Tension between truth and decision about truth (imperfect).
▶ Prob. of type I error denoted 𝛼. Usually fix 𝛼, eg. 𝛼 = 0.05.
▶ Prob. of type II error denoted 𝛽. Determined by the planned

experiment. Low 𝛽 good.
▶ Prob. of not making type II error called power (= 1 − 𝛽).

High power good.



Power 1/2

▶ Suppose 𝐻0 ∶ 𝜃 = 10, 𝐻𝑎 ∶ 𝜃 ≠ 10 for some parameter 𝜃.
▶ Suppose 𝐻0 wrong. What does that say about 𝜃?
▶ Not much. Could have 𝜃 = 11 or 𝜃 = 8 or 𝜃 = 496. In each

case, 𝐻0 wrong.



Power 2/2

▶ How likely a type II error is depends on what 𝜃 is:
▶ If 𝜃 = 496, should reject 𝐻0 ∶ 𝜃 = 10 even for small sample, so

𝛽 small (power large).
▶ If 𝜃 = 11, hard to reject 𝐻0 even with large sample, so 𝛽

would be larger (power smaller).
▶ Power depends on true parameter value, and on sample size.
▶ So we play “what if”: “if 𝜃 were 11 (or 8 or 496), what would

power be?”.



Figuring out power

▶ Time to figure out power is before you collect any data, as
part of planning process.

▶ Need to have idea of what kind of departure from null
hypothesis of interest to you, eg. average improvement of 5
points on reading test scores. (Subject-matter decision, not
statistical one.)

▶ Then, either:
▶ “I have this big a sample and this big a departure I want to

detect. What is my power for detecting it?”
▶ “I want to detect this big a departure with this much power.

How big a sample size do I need?”



How to understand/estimate power?

▶ Suppose we test 𝐻0 ∶ 𝜇 = 10 against 𝐻𝑎 ∶ 𝜇 ≠ 10, where 𝜇 is
population mean.

▶ Suppose in actual fact, 𝜇 = 8, so 𝐻0 is wrong. We want to
reject it. How likely is that to happen?

▶ Need population SD (take 𝜎 = 4) and sample size (take
𝑛 = 15). In practice, get 𝜎 from pilot/previous study, and
take the 𝑛 we plan to use.

▶ Idea: draw a random sample from the true distribution, test
whether its mean is 10 or not.

▶ Repeat previous step “many” times: simulation.



Making it go

▶ Random sample of 15 normal observations with mean 8 and
SD 4:

x <- rnorm(15, 8, 4)
x

[1] 14.487469 5.014611 6.924277 5.201860 8.852952 10.835874 3.686684
[8] 11.165242 8.016188 12.383518 1.378099 3.172503 13.074996 11.353573

[15] 5.015575

▶ Test whether x from population with mean 10 or not (over):



…continued

t.test(x, mu = 10)

One Sample t-test

data: x
t = -1.8767, df = 14, p-value = 0.08157
alternative hypothesis: true mean is not equal to 10
95 percent confidence interval:

5.794735 10.280387
sample estimates:
mean of x
8.037561

▶ P-value 0.081, so fail to reject the mean being 10 (a Type II
error).



or get just P-value

ans <- t.test(x, mu = 10)
ans$p.value

[1] 0.0815652



Run this lots of times via simulation

▶ draw random samples from the truth
▶ test that 𝜇 = 10
▶ get P-value
▶ Count up how many of the P-values are 0.05 or less.



In code

tibble(sim = 1:1000) %>%
rowwise() %>%
mutate(my_sample = list(rnorm(15, 8, 4))) %>%
mutate(t_test = list(t.test(my_sample, mu = 10))) %>%
mutate(p_val = t_test$p.value) %>%
count(p_val <= 0.05)

# A tibble: 2 x 2
# Rowwise:

`p_val <= 0.05` n
<lgl> <int>

1 FALSE 578
2 TRUE 422

We correctly rejected 422 times out of 1000, so the estimated
power is 0.422.



Try again with bigger sample

tibble(sim = 1:1000) %>%
rowwise() %>%
mutate(my_sample = list(rnorm(40, 8, 4))) %>%
mutate(t_test = list(t.test(my_sample, mu = 10))) %>%
mutate(p_val = t_test$p.value) %>%
count(p_val <= 0.05)

# A tibble: 2 x 2
# Rowwise:

`p_val <= 0.05` n
<lgl> <int>

1 FALSE 119
2 TRUE 881

Power is (much) larger with a bigger sample.



How accurate is my simulation?

▶ At our chosen 𝛼, each simulated test independently either
rejects or not with some probability 𝑝 that I am trying to
estimate (the power)

▶ Estimating a population probability using the sample
proportion (the number of simulated rejections out of the
number of simulated tests)

▶ hence, prop.test.
▶ inputs: number of rejections, number of simulations.



Sample size 15, rejected 422 times

prop.test(422, 1000)

1-sample proportions test with continuity correction

data: 422 out of 1000, null probability 0.5
X-squared = 24.025, df = 1, p-value = 9.509e-07
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.3912521 0.4533546

sample estimates:
p

0.422

95% CI for power: 0.391 to 0.453



To estimate power more accurately

▶ Run more simulations:

Change 1000 to eg 10,000:
tibble(sim = 1:10000) %>%
rowwise() %>%
mutate(my_sample = list(rnorm(15, 8, 4))) %>%
mutate(t_test = list(t.test(my_sample, mu = 10))) %>%
mutate(p_val = t_test$p.value) %>%
count(p_val <= 0.05)

# A tibble: 2 x 2
# Rowwise:

`p_val <= 0.05` n
<lgl> <int>

1 FALSE 5647
2 TRUE 4353



Accuracy of power now

prop.test(4353, 10000)

1-sample proportions test with continuity correction

data: 4353 out of 10000, null probability 0.5
X-squared = 167.18, df = 1, p-value < 2.2e-16
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.4255594 0.4450905

sample estimates:
p

0.4353

0.426 to 0.445, about factor
√

10 shorter because number of
simulations 10 times bigger.



Calculating power
▶ Simulation approach very flexible: will work for any test. But

answer different each time because of randomness.
▶ In some cases, for example 1-sample and 2-sample t-tests,

power can be calculated.
▶ power.t.test. Input delta is difference between null and

true mean:
power.t.test(n = 15, delta = 10-8, sd = 4, type = "one.sample")

One-sample t test power calculation

n = 15
delta = 2

sd = 4
sig.level = 0.05

power = 0.4378466
alternative = two.sided



Comparison of results

Method Power
Simulation (10000) 0.4353
power.t.test 0.4378

▶ Simulation power is similar to calculated power; to get more
accurate value, repeat more times (eg. 100,000 instead of
10,000), which takes longer.

▶ With this small a sample size, the power is not great. With a
bigger sample, the sample mean should be closer to 8 most of
the time, so would reject 𝐻0 ∶ 𝜇 = 10 more often.



Calculating required sample size

▶ Often, when planning a study, we do not have a particular
sample size in mind. Rather, we want to know how big a
sample to take. This can be done by asking how big a sample
is needed to achieve a certain power.

▶ The simulation approach does not work naturally with this,
since you have to supply a sample size.

▶ For that, you try different sample sizes until you get power
close to what you want.

▶ For the power-calculation method, you supply a value for the
power, but leave the sample size missing.

▶ Re-use the same problem: 𝐻0 ∶ 𝜇 = 10 against 2-sided
alternative, true 𝜇 = 8, 𝜎 = 4, but now aim for power 0.80.



Using power.t.test

▶ No n=, replaced by a power=:
power.t.test(power=0.80, delta=10-8, sd=4, type="one.sample")

One-sample t test power calculation

n = 33.3672
delta = 2

sd = 4
sig.level = 0.05

power = 0.8
alternative = two.sided

▶ Sample size must be a whole number, so round up to 34 (to
get at least as much power as you want).



Power curves

▶ Rather than calculating power for one sample size, or sample
size for one power, might want a picture of relationship
between sample size and power.

▶ Or, likewise, picture of relationship between difference
between true and null-hypothesis means and power.

▶ Called power curve.
▶ Build and plot it yourself.



Building it:

tibble(n=seq(10, 100, 10)) %>% rowwise() %>%
mutate(power_output =

list(power.t.test(n = n, delta = 10-8, sd = 4,
type = "one.sample"))) %>%

mutate(power = power_output$power) %>%
ggplot(aes(x=n, y=power)) + geom_point() + geom_line() +

geom_hline(yintercept=1, linetype="dashed") -> g2



The power curve
g2
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Power curves for means

▶ Can also investigate power as it depends on what the true
mean is (the farther from null mean 10, the higher the power
will be).

▶ Investigate for two different sample sizes, 15 and 30.
▶ First make all combos of mean and sample size:

means <- seq(6,10,0.5)
ns <- c(15,30)
combos <- crossing(mean=means, n=ns)



The combos
combos

# A tibble: 18 x 2
mean n

<dbl> <dbl>
1 6 15
2 6 30
3 6.5 15
4 6.5 30
5 7 15
6 7 30
7 7.5 15
8 7.5 30
9 8 15

10 8 30
11 8.5 15
12 8.5 30
13 9 15
14 9 30
15 9.5 15
16 9.5 30
17 10 15
18 10 30



Calculate powers:

combos %>%
rowwise() %>%
mutate(power_stuff = list(power.t.test(n=n, delta=10-mean, sd=4,

type="one.sample"))) %>%
mutate(power = power_stuff$power) -> powers



then make the plot:

g <- ggplot(powers, aes(x = mean, y = power, colour = factor(n))) +
geom_point() + geom_line() +
geom_hline(yintercept = 1, linetype = "dashed") +
geom_vline(xintercept = 10, linetype = "dotted")

▶ Need n as categorical so that colour works properly.



The power curves
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Comments

▶ When mean=10, that is, the true mean equals the null mean,
𝐻0 is actually true, and the probability of rejecting it then is
𝛼 = 0.05.

▶ As the null gets more wrong (mean decreases), it becomes
easier to correctly reject it.

▶ The blue power curve is above the red one for any mean < 10,
meaning that no matter how wrong 𝐻0 is, you always have a
greater chance of correctly rejecting it with a larger sample
size.

▶ Previously, we had 𝐻0 ∶ 𝜇 = 10 and a true 𝜇 = 8, so a mean
of 8 produces power 0.42 and 0.80 as shown on the graph.

▶ With 𝑛 = 30, a true mean that is less than about 7 is almost
certain to be correctly rejected. (With 𝑛 = 15, the true mean
needs to be less than 6.)



Two-sample power

▶ For kids learning to read, had sample sizes of 22 (approx) in
each group

▶ and these group SDs:
kids %>% group_by(group) %>%
summarize(n=n(), s=sd(score))

# A tibble: 2 x 3
group n s
<chr> <int> <dbl>

1 c 23 17.1
2 t 21 11.0



Setting up

▶ suppose a 5-point improvement in reading score was
considered important (on this scale)

▶ in a 2-sample test, null (difference of) mean is zero, so delta
is true difference in means

▶ what is power for these sample sizes, and what sample size
would be needed to get power up to 0.80?

▶ SD in both groups has to be same in power.t.test, so take
as 14.



Calculating power for sample size 22 (per group)

power.t.test(n=22, delta=5, sd=14, type="two.sample",
alternative="one.sided")

Two-sample t test power calculation

n = 22
delta = 5

sd = 14
sig.level = 0.05

power = 0.3158199
alternative = one.sided

NOTE: n is number in *each* group



sample size for power 0.8

power.t.test(power=0.80, delta=5, sd=14, type="two.sample",
alternative="one.sided")

Two-sample t test power calculation

n = 97.62598
delta = 5

sd = 14
sig.level = 0.05

power = 0.8
alternative = one.sided

NOTE: n is number in *each* group



Comments

▶ The power for the sample sizes we have is very small (to
detect a 5-point increase).

▶ To get power 0.80, we need 98 kids in each group!


