
Reading data files

Introduction

▶ First thing we need to do is to read in data, so that we can
use our software to analyze.

▶ Consider these:
▶ Spreadsheet data saved as .csv file.
▶ “Delimited” data such as values separated by spaces.
▶ Actual Excel spreadsheets.

Packages for this section

library(tidyverse)

A spreadsheet

Save as .csv

▶ .csv or “comma-separated values” is a way of turning
spreadsheet values into plain text.

▶ Easy to read into R
▶ but does not preserve formulas. (This is a reason for doing all

your calculations in your statistical software, and only having
data in your spreadsheet.)

▶ File, Save As Text CSV (or similar).
▶ used name test1.csv.

The .csv file

id,x,y,group
p1,10,21,upper
p2,11,20,lower
p3,13,25,upper
p4,15,27,lower
p5,16,30,upper
p6,17,31,lower

To read this in:
▶ Fire up R Studio at r.datatools.utoronto.ca
▶ Upload this .csv file. (Bottom right, next to New Folder,

Upload.) Click Choose File, find the file, click Open. Click
OK. See the file appear bottom right.

Make a new Quarto document

▶ File, New File, Quarto Document
▶ …and get rid of the template document (leaving the first four

lines).
▶ Make a code chunk and in it put this. Run it.

library(tidyverse)

Reading in the file

▶ Use read_csv with the name of the file, in quotes. Save the
read-in file in something, here called mydata. Make a new
code chunk for this:

mydata <- read_csv("test1.csv")
mydata

A tibble: 6 x 4
id x y group
<chr> <dbl> <dbl> <chr>

1 p1 10 21 upper
2 p2 11 20 lower
3 p3 13 25 upper
4 p4 15 27 lower
5 p5 16 30 upper
6 p6 17 31 lower

More on the above

▶ read_csv guesses what kind of thing is in each column. Here
it correctly guesses that:

▶ id and group are text (categorical variables). id is actually
“identifier variable”: identifies individuals.

▶ x and y are “double”: numbers that might have a decimal
point in them.

R Studio on your own computer
▶ Put the .csv file in the same folder as your project. Then read

it in as above like read_csv("test1.csv").
▶ Or, use

f <- file.choose()
f

which brings up a file selector (as if you were going to find a file to
load or save it). Find your .csv file, the address of which will be
saved in f, and then:
mydata <- read_csv(f)

▶ When you have selected the file, comment out the
file.choose line by putting a # on the front of it. That will
save you having to find the file again by mistake. (Keyboard
shortcut: go to the line, type control-shift-C or Mac
equivalent with Cmd.)

Looking at what we read in

▶ Again, type the name of the thing to display it:
mydata

A tibble: 6 x 4
id x y group
<chr> <dbl> <dbl> <chr>

1 p1 10 21 upper
2 p2 11 20 lower
3 p3 13 25 upper
4 p4 15 27 lower
5 p5 16 30 upper
6 p6 17 31 lower

▶ This is a “tibble” or data frame, the standard way of storing a
data set in R.

▶ Tibbles print as much as will display on the screen. If there
are more rows or columns, it will say so.

▶ You will see navigation keys to display more rows or columns
(if there are more).

View-ing your data frame
▶ Another way to examine your data frame is to View it, like

this:
View(mydata)

…or find your data frame in the Global Environment top right and
click it. - This pops up a “data frame viewer” top left:

This View

▶ Read-only: cannot edit data
▶ Can display data satisfying conditions: click on Filter, then:

▶ for a categorical variable, type name of category you want
▶ for a quantitative variable, use slider to describe values you

want.
▶ Can sort a column into ascending or descending order (click

little arrows next to column name).
▶ Clicking the symbol with arrow on it left of Filter “pops out”

View into separate (bigger) window.

Summarizing what we read in
▶ It is always a good idea to look at your data after you have

read it in, to make sure you have believable numbers (and the
right number of individuals and variables).

▶ Quick check for errors: these often show up as values too high
or too low, so the min and/or max will be unreasonable.

▶ Five-number summary:
summary(mydata)

id x y group
Length:6 Min. :10.00 Min. :20.00 Length:6
Class :character 1st Qu.:11.50 1st Qu.:22.00 Class :character
Mode :character Median :14.00 Median :26.00 Mode :character

Mean :13.67 Mean :25.67
3rd Qu.:15.75 3rd Qu.:29.25
Max. :17.00 Max. :31.00

▶ Quantitative, five-number summary plus mean.
▶ Categorical, how many rows.

Reading from a URL

▶ Any data file on the Web can be read directly.
▶ Example data link:
▶ Use URL instead of filename.
▶ I like to save the URL in a variable first (because URLs tend

to be long), and then put that variable in the read_ function:
my_url <- "http://ritsokiguess.site/datafiles/global.csv"
my_url

[1] "http://ritsokiguess.site/datafiles/global.csv"
global <- read_csv(my_url)

http://ritsokiguess.site/datafiles/global.csv

The data

global

A tibble: 10 x 3
warehouse size cost
<chr> <dbl> <dbl>

1 A 225 12.0
2 B 350 14.1
3 A 150 8.93
4 A 200 11.0
5 A 175 10.0
6 A 180 10.1
7 B 325 13.8
8 B 290 13.3
9 B 400 15

10 A 125 7.97

Space-delimited files
▶ Another common format for data is a text file with the values

separated by spaces. Top of some other data:

cup tempdiff
Starbucks 13
Starbucks 7
Starbucks 7
Starbucks 17.5
Starbucks 10
Starbucks 15.5
Starbucks 6
Starbucks 6
SIGG 12
SIGG 16
SIGG 9
SIGG 23
SIGG 11
SIGG 20.5
SIGG 12.5
SIGG 20.5
SIGG 24.5
CUPPS 6
CUPPS 6
CUPPS 18.5
CUPPS 10

Reading the coffee data
▶ This file was on my computer so I uploaded it to

r.datatools.utoronto.ca first.
▶ This time, read_delim, and we also have to say what the

thing is separating the values:
coffee <- read_delim("coffee.txt", " ")
coffee

A tibble: 32 x 2
cup tempdiff
<chr> <dbl>

1 Starbucks 13
2 Starbucks 7
3 Starbucks 7
4 Starbucks 17.5
5 Starbucks 10
6 Starbucks 15.5
7 Starbucks 6
8 Starbucks 6
9 SIGG 12

10 SIGG 16
i 22 more rows

▶ Name of the cup, text, and tempdiff, a decimal number.

Looking at the values (some)
coffee

A tibble: 32 x 2
cup tempdiff
<chr> <dbl>

1 Starbucks 13
2 Starbucks 7
3 Starbucks 7
4 Starbucks 17.5
5 Starbucks 10
6 Starbucks 15.5
7 Starbucks 6
8 Starbucks 6
9 SIGG 12

10 SIGG 16
i 22 more rows

These were four brands of travel mug (in cup), and for each, how
much the temperature of the coffee in the mug decreased over 30
minutes.

Reading from the Web; the soap data

▶ Use the URL in place of the filename.
▶ Save the URL in a variable first:

url <- "http://ritsokiguess.site/datafiles/soap.txt"
soap <- read_delim(url, " ")

The soap data (some)
soap

A tibble: 27 x 4
case scrap speed line

<dbl> <dbl> <dbl> <chr>
1 1 218 100 a
2 2 248 125 a
3 3 360 220 a
4 4 351 205 a
5 5 470 300 a
6 6 394 255 a
7 7 332 225 a
8 8 321 175 a
9 9 410 270 a

10 10 260 170 a
i 17 more rows

Data aligned in columns
▶ Sometimes you see data aligned in columns, thus:

▶ read_delim will not work: values separated by more than one
space.

▶ The number of spaces between values is not constant, because
there is one fewer space before the 10.

▶ read_table works for this.

Reading in column-aligned data

drugs <- read_table("migraine.txt")
drugs

A tibble: 9 x 3
DrugA DrugB DrugC
<dbl> <dbl> <dbl>

1 4 6 6
2 5 8 7
3 4 4 6
4 3 5 6
5 2 4 7
6 4 6 5
7 3 5 6
8 4 10 5
9 4 6 5

Reading an Excel sheet directly
▶ Here is my spreadsheet from before, but tarted up a bit:

▶ It is now a workbook with a second sheet called “notes” (that
we don’t want).

▶ Install package readxl first.

test2.xlsx

Reading it in
▶ Read into R, saying that we only want the sheet “data”.

Upload spreadsheet first.
▶ Excel spreadsheets must be “local”: cannot read one in from

a URL.
install.packages("readxl")
library(readxl)
mydata2 <- read_excel("test2.xlsx", sheet = "data")
mydata2

A tibble: 6 x 4
id x y group
<chr> <dbl> <dbl> <chr>

1 p1 10 21 upper
2 p2 11 20 lower
3 p3 13 25 upper
4 p4 15 27 lower
5 p5 16 30 upper
6 p6 17 31 lower

