
Regression revisited



Regression

▶ Use regression when one variable is an outcome (response, 𝑦).
▶ See if/how response depends on other variable(s), explanatory,

𝑥1, 𝑥2, ….
▶ Can have one or more than one explanatory variable, but

always one response.
▶ Assumes a straight-line relationship between response and

explanatory.
▶ Ask:

▶ is there a relationship between 𝑦 and 𝑥’s, and if so, which
ones?

▶ what does the relationship look like?



Packages

library(MASS) # for Box-Cox, later
library(tidyverse)
library(broom)
library(marginaleffects)
library(conflicted)
conflict_prefer("select", "dplyr")



A regression with one 𝑥

13 children, measure average total sleep time (ATST, mins) and
age (years) for each. See if ATST depends on age. Data in
sleep.txt, ATST then age. Read in data:
my_url <- "http://ritsokiguess.site/datafiles/sleep.txt"
sleep <- read_delim(my_url, " ")



Check data
summary(sleep)

atst age
Min. :461.8 Min. : 4.400
1st Qu.:491.1 1st Qu.: 7.200
Median :528.3 Median : 8.900
Mean :519.3 Mean : 9.058
3rd Qu.:532.5 3rd Qu.:11.100
Max. :586.0 Max. :14.000

sleep

# A tibble: 13 x 2
atst age

<dbl> <dbl>
1 586 4.4
2 462. 14
3 491. 10.1
4 565 6.7
5 462 11.5
6 532. 9.6
7 478. 12.4
8 515. 8.9
9 493 11.1

10 528. 7.75
11 576. 5.5
12 532. 8.6
13 530. 7.2

Make scatter plot of ATST (response) vs. age (explanatory) using
code overleaf:



The scatterplot

ggplot(sleep, aes(x = age, y = atst)) + geom_point()
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Correlation

▶ Measures how well a straight line fits the data:
with(sleep, cor(atst, age))

[1] -0.9515469

▶ 1 is perfect upward trend, −1 is perfect downward trend, 0 is
no trend.

▶ This one close to perfect downward trend.
▶ Can do correlations of all pairs of variables:

cor(sleep)

atst age
atst 1.0000000 -0.9515469
age -0.9515469 1.0000000



Lowess curve

▶ Sometimes nice to guide the eye: is the trend straight, or not?
▶ Idea: lowess curve. “Locally weighted least squares”, not

affected by outliers, not constrained to be linear.
▶ Lowess is a guide: even if straight line appropriate, may

wiggle/bend a little. Looking for serious problems with
linearity.

▶ Add lowess curve to plot using geom_smooth:



Plot with lowess curve
ggplot(sleep, aes(x = age, y = atst)) + geom_point() +
geom_smooth()
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The regression

Scatterplot shows no obvious curve, and a pretty clear downward
trend. So we can run the regression:
sleep.1 <- lm(atst ~ age, data = sleep)



The output
summary(sleep.1)

Call:
lm(formula = atst ~ age, data = sleep)

Residuals:
Min 1Q Median 3Q Max

-23.011 -9.365 2.372 6.770 20.411

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 646.483 12.918 50.05 2.49e-14 ***
age -14.041 1.368 -10.26 5.70e-07 ***
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 13.15 on 11 degrees of freedom
Multiple R-squared: 0.9054, Adjusted R-squared: 0.8968
F-statistic: 105.3 on 1 and 11 DF, p-value: 5.7e-07



Conclusions

▶ The relationship appears to be a straight line, with a
downward trend.

▶ 𝐹 -tests for model as a whole and 𝑡-test for slope (same) both
confirm this (P-value 5.7 × 10−7 = 0.00000057).

▶ Slope is −14, so a 1-year increase in age goes with a
14-minute decrease in ATST on average.

▶ R-squared is correlation squared (when one 𝑥 anyway),
between 0 and 1 (1 good, 0 bad).

▶ Here R-squared is 0.9054, pleasantly high.



Doing things with the regression output

▶ Output from regression (and eg. 𝑡-test) is all right to look at,
but hard to extract and re-use information from.

▶ Package broom extracts info from model output in way that
can be used in pipe (later):

tidy(sleep.1)

# A tibble: 2 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 646. 12.9 50.0 2.49e-14
2 age -14.0 1.37 -10.3 5.70e- 7



also one-line summary of model:

glance(sleep.1)

# A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.905 0.897 13.2 105. 0.000000570 1
# i 6 more variables: logLik <dbl>, AIC <dbl>, BIC <dbl>,
# deviance <dbl>, df.residual <int>, nobs <int>



Broom part 2
sleep.1 %>% augment(sleep)

# A tibble: 13 x 8
atst age .fitted .resid .hat .sigma .cooksd

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 586 4.4 585. 1.30 0.312 13.8 0.00320
2 462. 14 450. 11.8 0.341 13.0 0.319
3 491. 10.1 505. -13.6 0.0887 13.0 0.0568
4 565 6.7 552. 12.6 0.137 13.1 0.0844
5 462 11.5 485. -23.0 0.141 11.3 0.294
6 532. 9.6 512. 20.4 0.0801 12.0 0.114
7 478. 12.4 472. 5.23 0.198 13.7 0.0243
8 515. 8.9 522. -6.32 0.0772 13.6 0.0105
9 493 11.1 491. 2.37 0.122 13.8 0.00258

10 528. 7.75 538. -9.37 0.0954 13.4 0.0296
11 576. 5.5 569. 6.64 0.214 13.6 0.0441
12 532. 8.6 526. 6.77 0.0792 13.6 0.0124
13 530. 7.2 545. -14.9 0.114 12.9 0.0933
# i 1 more variable: .std.resid <dbl>

Useful for plotting residuals against an 𝑥-variable.



CI for mean response and prediction intervals

Once useful regression exists, use it for prediction:
▶ To get a single number for prediction at a given 𝑥, substitute

into regression equation, eg. age 10: predicted ATST is
646.48 − 14.04(10) = 506 minutes.

▶ To express uncertainty of this prediction:
▶ CI for mean response expresses uncertainty about mean ATST

for all children aged 10, based on data.
▶ Prediction interval expresses uncertainty about predicted

ATST for a new child aged 10 whose ATST not known. More
uncertain.

▶ Also do above for a child aged 5.



The marginaleffects package 1/2

To get predictions for specific values, set up a dataframe with
those values first:
new <- datagrid(model = sleep.1, age = c(10, 5))
new

atst age
1 519.3038 10
2 519.3038 5

Any variables in the dataframe that you don’t specify are set to
their mean values (quantitative) or most common category
(categorical).



The marginaleffects package 2/2

Then feed into newdata in predictions. This contains a lot of
columns, so you probably want only to display the ones you care
about:
cbind(predictions(sleep.1, newdata = new)) %>%
select(estimate, conf.low, conf.high, age)

estimate conf.low conf.high age
1 576.2781 563.2588 589.2974 5
2 506.0729 498.4899 513.6558 10

The confidence limits are a 95% confidence interval for the mean
response at that age.



Prediction intervals

These are obtained (instead) with predict as below. Use the
same dataframe new as before:
pp <- predict(sleep.1, new, interval = "p")
pp

fit lwr upr
1 506.0729 475.8982 536.2475
2 576.2781 543.8474 608.7088
cbind(new, pp) %>% select(-atst)

age fit lwr upr
1 10 506.0729 475.8982 536.2475
2 5 576.2781 543.8474 608.7088



Plotting the confidence intervals for mean response again:
plot_predictions(sleep.1, condition = "age")
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Comments

▶ Age 10 closer to centre of data, so intervals are both narrower
than those for age 5.

▶ Prediction intervals bigger than CI for mean (additional
uncertainty).

▶ Technical note: output from predict is R matrix, not data
frame, so Tidyverse bind_cols does not work. Use base R
cbind.



That grey envelope
Marks confidence interval for mean for all 𝑥:
ggplot(sleep, aes(x = age, y = atst)) + geom_point() +
geom_smooth(method = "lm") +
scale_y_continuous(breaks = seq(420, 600, 20))
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Diagnostics

How to tell whether a straight-line regression is appropriate?
▶ Before: check scatterplot for straight trend.
▶ After: plot residuals (observed minus predicted response)

against predicted values. Aim: a plot with no pattern.



Residual plot

Not much pattern here — regression appropriate.
ggplot(sleep.1, aes(x = .fitted, y = .resid)) + geom_point()
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An inappropriate regression

Different data:
my_url <- "http://ritsokiguess.site/datafiles/curvy.txt"
curvy <- read_delim(my_url, " ")



Scatterplot

ggplot(curvy, aes(x = xx, y = yy)) + geom_point()
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Regression line, anyway
curvy.1 <- lm(yy ~ xx, data = curvy)
summary(curvy.1)

Call:
lm(formula = yy ~ xx, data = curvy)

Residuals:
Min 1Q Median 3Q Max

-3.582 -2.204 0.000 1.514 3.509

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.5818 1.5616 4.855 0.00126 **
xx 0.9818 0.2925 3.356 0.00998 **
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.657 on 8 degrees of freedom
Multiple R-squared: 0.5848, Adjusted R-squared: 0.5329
F-statistic: 11.27 on 1 and 8 DF, p-value: 0.009984



Residual plot

ggplot(curvy.1, aes(x = .fitted, y = .resid)) + geom_point()
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No good: fixing it up

▶ Residual plot has curve: middle residuals positive, high and
low ones negative. Bad.

▶ Fitting a curve would be better. Try this:
curvy.2 <- lm(yy ~ xx + I(xx^2), data = curvy)

▶ Adding xx-squared term, to allow for curve.
▶ Another way to do same thing: specify how model changes:

curvy.2a <- update(curvy.1, . ~ . + I(xx^2))



Regression 2
tidy(curvy.2)

# A tibble: 3 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 3.9 0.773 5.04 0.00149
2 xx 3.74 0.400 9.36 0.0000331
3 I(xx^2) -0.307 0.0428 -7.17 0.000182
glance(curvy.2) #

# A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.950 0.936 0.983 66.8 0.0000275 2
# i 6 more variables: logLik <dbl>, AIC <dbl>, BIC <dbl>,
# deviance <dbl>, df.residual <int>, nobs <int>



Comments

▶ xx-squared term definitely significant (P-value 0.000182), so
need this curve to describe relationship.

▶ Adding squared term has made R-squared go up from 0.5848
to 0.9502: great improvement.

▶ This is a definite curve!



The residual plot now

No problems any more:
ggplot(curvy.2, aes(x = .fitted, y = .resid)) + geom_point()
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Another way to handle curves

▶ Above, saw that changing 𝑥 (adding 𝑥2) was a way of
handling curved relationships.

▶ Another way: change 𝑦 (transformation).
▶ Can guess how to change 𝑦, or might be theory:
▶ example: relationship 𝑦 = 𝑎𝑒𝑏𝑥 (exponential growth):
▶ take logs to get ln 𝑦 = ln 𝑎 + 𝑏𝑥.
▶ Taking logs has made relationship linear (ln 𝑦 as response).
▶ Or, estimate transformation, using Box-Cox method.



Box-Cox

▶ Install package MASS via install.packages("MASS") (only
need to do once)

▶ Every R session you want to use something in MASS, type
library(MASS)



Some made-up data
my_url <- "http://ritsokiguess.site/datafiles/madeup2.csv"
madeup <- read_csv(my_url)
madeup

# A tibble: 8 x 3
...1 x y
<dbl> <dbl> <dbl>

1 1 0 17.9
2 2 1 33.6
3 3 2 82.7
4 4 3 31.2
5 5 4 177.
6 6 5 359.
7 7 6 469.
8 8 7 283.

Seems to be faster-than-linear growth, maybe exponential growth.



Scatterplot: faster than linear growth

ggplot(madeup, aes(x = x, y = y)) + geom_point() +
geom_smooth()
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Running Box-Cox

▶ library(MASS) first.
▶ Feed boxcox a model formula with a squiggle in it, such as

you would use for lm.
▶ Output: a graph (next page):

boxcox(y ~ x, data = madeup)



The Box-Cox output
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Comments

▶ 𝜆 (lambda) is the power by which you should transform 𝑦 to
get the relationship straight (straighter). Power 0 is “take
logs”

▶ Middle dotted line marks best single value of 𝜆 (here about
0.1).

▶ Outer dotted lines mark 95% CI for 𝜆, here −0.3 to 0.7,
approx. (Rather uncertain about best transformation.)

▶ Any power transformation within the CI supported by data. In
this case, log (𝜆 = 0) and square root (𝜆 = 0.5) good, but no
transformation (𝜆 = 1) not.

▶ Pick a “round-number” value of 𝜆 like 2, 1, 0.5, 0, −0.5, −1.
Here 0 and 0.5 good values to pick.



Did transformation straighten things?

▶ Plot transformed 𝑦 against 𝑥. Here, log:
ggplot(madeup, aes(x = x, y = log(y))) + geom_point() +
geom_smooth()
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Looks much straighter.



Regression with transformed 𝑦
madeup.1 <- lm(log(y) ~ x, data = madeup)
glance(madeup.1)

# A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.811 0.779 0.588 25.7 0.00228 1
# i 6 more variables: logLik <dbl>, AIC <dbl>, BIC <dbl>,
# deviance <dbl>, df.residual <int>, nobs <int>
tidy(madeup.1)

# A tibble: 2 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 3.03 0.379 7.98 0.000206
2 x 0.460 0.0907 5.07 0.00228

R-squared now decently high.



Multiple regression

▶ What if more than one 𝑥? Extra issues:
▶ Now one intercept and a slope for each 𝑥: how to interpret?
▶ Which 𝑥-variables actually help to predict 𝑦?
▶ Different interpretations of “global” 𝐹 -test and individual

𝑡-tests.
▶ R-squared no longer correlation squared, but still interpreted as

“higher better”.
▶ In lm line, add extra 𝑥s after ~.
▶ Interpretation not so easy (and other problems that can occur).



Multiple regression example

Study of women and visits to health professionals, and how the
number of visits might be related to other variables:

timedrs: number of visits to health professionals (over course
of study)

phyheal: number of physical health problems

menheal: number of mental health problems

stress: result of questionnaire about number and type of life
changes

timedrs response, others explanatory.



The data

my_url <-
"http://ritsokiguess.site/datafiles/regressx.txt"

visits <- read_delim(my_url, " ")



Check data

visits

# A tibble: 465 x 5
subjno timedrs phyheal menheal stress
<dbl> <dbl> <dbl> <dbl> <dbl>

1 1 1 5 8 265
2 2 3 4 6 415
3 3 0 3 4 92
4 4 13 2 2 241
5 5 15 3 6 86
6 6 3 5 5 247
7 7 2 5 6 13
8 8 0 4 5 12
9 9 7 5 4 269

10 10 4 3 9 391
# i 455 more rows



Fit multiple regression
visits.1 <- lm(timedrs ~ phyheal + menheal + stress,
data = visits)

summary(visits.1)

Call:
lm(formula = timedrs ~ phyheal + menheal + stress, data = visits)

Residuals:
Min 1Q Median 3Q Max

-14.792 -4.353 -1.815 0.902 65.886

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.704848 1.124195 -3.296 0.001058 **
phyheal 1.786948 0.221074 8.083 5.6e-15 ***
menheal -0.009666 0.129029 -0.075 0.940318
stress 0.013615 0.003612 3.769 0.000185 ***
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 9.708 on 461 degrees of freedom
Multiple R-squared: 0.2188, Adjusted R-squared: 0.2137
F-statistic: 43.03 on 3 and 461 DF, p-value: < 2.2e-16



The slopes

▶ Model as a whole strongly significant even though R-sq not
very big (lots of data). At least one of the 𝑥’s predicts
timedrs.

▶ The physical health and stress variables definitely help to
predict the number of visits, but with those in the model we
don’t need menheal. However, look at prediction of timedrs
from menheal by itself:



Just menheal
visits.2 <- lm(timedrs ~ menheal, data = visits)
summary(visits.2)

Call:
lm(formula = timedrs ~ menheal, data = visits)

Residuals:
Min 1Q Median 3Q Max

-13.826 -5.150 -2.818 1.177 72.513

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.8159 0.8702 4.385 1.44e-05 ***
menheal 0.6672 0.1173 5.688 2.28e-08 ***
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.6 on 463 degrees of freedom
Multiple R-squared: 0.06532, Adjusted R-squared: 0.0633
F-statistic: 32.35 on 1 and 463 DF, p-value: 2.279e-08



menheal by itself

▶ menheal by itself does significantly help to predict timedrs.
▶ But the R-sq is much less (6.5% vs. 22%).
▶ So other two variables do a better job of prediction.
▶ With those variables in the regression (phyheal and stress),

don’t need menheal as well.



Investigating via correlation

Leave out first column (subjno):
visits %>% select(-subjno) %>% cor()

timedrs phyheal menheal stress
timedrs 1.0000000 0.4395293 0.2555703 0.2865951
phyheal 0.4395293 1.0000000 0.5049464 0.3055517
menheal 0.2555703 0.5049464 1.0000000 0.3697911
stress 0.2865951 0.3055517 0.3697911 1.0000000

▶ phyheal most strongly correlated with timedrs.
▶ Not much to choose between other two.
▶ But menheal has higher correlation with phyheal, so not as

much to add to prediction as stress.
▶ Goes to show things more complicated in multiple regression.



Residual plot (from timedrs on all)

ggplot(visits.1, aes(x = .fitted, y = .resid)) + geom_point()
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Normal quantile plot of residuals

ggplot(visits.1, aes(sample = .resid)) + stat_qq() + stat_qq_line()
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Absolute residuals

Is there trend in size of residuals (fan-out)? Plot absolute value of
residual against fitted value:
ggplot(visits.1, aes(x = .fitted, y = abs(.resid))) +
geom_point() + geom_smooth()
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Comments

▶ On the normal quantile plot:
▶ highest (most positive) residuals are way too high
▶ distribution of residuals skewed to right (not normal at all)

▶ On plot of absolute residuals:
▶ size of residuals getting bigger as fitted values increase
▶ predictions getting more variable as fitted values increase
▶ that is, predictions getting less accurate as fitted values

increase, but predictions should be equally accurate all way
along.

▶ Both indicate problems with regression, of kind that
transformation of response often fixes: that is, predict
function of response timedrs instead of timedrs itself.



Box-Cox transformations

▶ Taking log of timedrs and having it work: lucky guess. How
to find good transformation?

▶ Box-Cox again.
▶ Extra problem: some of timedrs values are 0, but Box-Cox

expects all +. Note response for boxcox:
boxcox(timedrs + 1 ~ phyheal + menheal + stress, data = visits)



Try 1
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Comments on try 1

▶ Best: 𝜆 just less than zero.
▶ Hard to see scale.
▶ Focus on 𝜆 in (−0.3, 0.1):

my.lambda <- seq(-0.3, 0.1, 0.01)
my.lambda

[1] -0.30 -0.29 -0.28 -0.27 -0.26 -0.25 -0.24 -0.23 -0.22
[10] -0.21 -0.20 -0.19 -0.18 -0.17 -0.16 -0.15 -0.14 -0.13
[19] -0.12 -0.11 -0.10 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04
[28] -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05
[37] 0.06 0.07 0.08 0.09 0.10



Try 2

boxcox(timedrs + 1 ~ phyheal + menheal + stress,
lambda = my.lambda,
data = visits

)
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Comments

▶ Best: 𝜆 just about −0.07.
▶ CI for 𝜆 about (−0.14, 0.01).
▶ Only nearby round number: 𝜆 = 0, log transformation.



Fixing the problems

▶ Try regression again, with transformed response instead of
original one.

▶ Then check residual plot to see that it is OK now.
visits.3 <- lm(log(timedrs + 1) ~ phyheal + menheal + stress,
data = visits

)

▶ timedrs+1 because some timedrs values 0, can’t take log of
0.

▶ Won’t usually need to worry about this, but when response
could be zero/negative, fix that before transformation.



Output
summary(visits.3)

Call:
lm(formula = log(timedrs + 1) ~ phyheal + menheal + stress, data = visits)

Residuals:
Min 1Q Median 3Q Max

-1.95865 -0.44076 -0.02331 0.42304 2.36797

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.3903862 0.0882908 4.422 1.22e-05 ***
phyheal 0.2019361 0.0173624 11.631 < 2e-16 ***
menheal 0.0071442 0.0101335 0.705 0.481
stress 0.0013158 0.0002837 4.638 4.58e-06 ***
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7625 on 461 degrees of freedom
Multiple R-squared: 0.3682, Adjusted R-squared: 0.3641
F-statistic: 89.56 on 3 and 461 DF, p-value: < 2.2e-16



Comments

▶ Model as a whole strongly significant again
▶ R-sq higher than before (37% vs. 22%) suggesting things

more linear now
▶ Same conclusion re menheal: can take out of regression.
▶ Should look at residual plots (next pages). Have we fixed

problems?



Residuals against fitted values

ggplot(visits.3, aes(x = .fitted, y = .resid)) +
geom_point()
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Normal quantile plot of residuals

ggplot(visits.3, aes(sample = .resid)) + stat_qq() + stat_qq_line()
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Absolute residuals against fitted

ggplot(visits.3, aes(x = .fitted, y = abs(.resid))) +
geom_point() + geom_smooth()
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Comments

▶ Residuals vs. fitted looks a lot more random.
▶ Normal quantile plot looks a lot more normal (though still a

little right-skewness)
▶ Absolute residuals: not so much trend (though still some).
▶ Not perfect, but much improved.



Testing more than one 𝑥 at once

▶ The 𝑡-tests test only whether one variable could be taken out
of the regression you’re looking at.

▶ To test significance of more than one variable at once, fit
model with and without variables

▶ then use anova to compare fit of models:
visits.5 <- lm(log(timedrs + 1) ~ phyheal + menheal + stress,

data = visits)
visits.6 <- lm(log(timedrs + 1) ~ stress, data = visits)



Results of tests
anova(visits.6, visits.5)

Analysis of Variance Table

Model 1: log(timedrs + 1) ~ stress
Model 2: log(timedrs + 1) ~ phyheal + menheal + stress

Res.Df RSS Df Sum of Sq F Pr(>F)
1 463 371.47
2 461 268.01 2 103.46 88.984 < 2.2e-16 ***
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

▶ Models don’t fit equally well, so bigger one fits better.
▶ Or “taking both variables out makes the fit worse, so don’t do

it”.
▶ Taking out those 𝑥’s is a mistake. Or putting them in is a

good idea.



The punting data

Data set punting.txt contains 4 variables for 13 right-footed
football kickers (punters): left leg and right leg strength (lbs),
distance punted (ft), another variable called “fred”. Predict
punting distance from other variables:
left right punt fred
170 170 162.50 171
130 140 144.0 136
170 180 174.50 174
160 160 163.50 161
150 170 192.0 159
150 150 171.75 151
180 170 162.0 174
110 110 104.83 111
110 120 105.67 114
120 130 117.58 126
140 120 140.25 129
130 140 150.17 136
150 160 165.17 154



Reading in

▶ Separated by multiple spaces with columns lined up:
my_url <- "http://ritsokiguess.site/datafiles/punting.txt"
punting <- read_table(my_url)



The data
punting

# A tibble: 13 x 4
left right punt fred

<dbl> <dbl> <dbl> <dbl>
1 170 170 162. 171
2 130 140 144 136
3 170 180 174. 174
4 160 160 164. 161
5 150 170 192 159
6 150 150 172. 151
7 180 170 162 174
8 110 110 105. 111
9 110 120 106. 114

10 120 130 118. 126
11 140 120 140. 129
12 130 140 150. 136
13 150 160 165. 154



Regression and output
punting.1 <- lm(punt ~ left + right + fred, data = punting)
glance(punting.1)

# A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.778 0.704 14.7 10.5 0.00267 3
# i 6 more variables: logLik <dbl>, AIC <dbl>, BIC <dbl>,
# deviance <dbl>, df.residual <int>, nobs <int>
tidy(punting.1)

# A tibble: 4 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) -4.69 29.1 -0.161 0.876
2 left 0.268 2.11 0.127 0.902
3 right 1.05 2.15 0.490 0.636
4 fred -0.267 4.23 -0.0632 0.951
summary(punting.1)

Call:
lm(formula = punt ~ left + right + fred, data = punting)

Residuals:
Min 1Q Median 3Q Max

-14.9325 -11.5618 -0.0315 9.0415 20.0886

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.6855 29.1172 -0.161 0.876
left 0.2679 2.1111 0.127 0.902
right 1.0524 2.1477 0.490 0.636
fred -0.2672 4.2266 -0.063 0.951

Residual standard error: 14.68 on 9 degrees of freedom
Multiple R-squared: 0.7781, Adjusted R-squared: 0.7042
F-statistic: 10.52 on 3 and 9 DF, p-value: 0.00267



Comments

▶ Overall regression strongly significant, R-sq high.
▶ None of the 𝑥’s significant! Why?
▶ 𝑡-tests only say that you could take any one of the 𝑥’s out

without damaging the fit; doesn’t matter which one.
▶ Explanation: look at correlations.



The correlations

cor(punting)

left right punt fred
left 1.0000000 0.8957224 0.8117368 0.9722632
right 0.8957224 1.0000000 0.8805469 0.9728784
punt 0.8117368 0.8805469 1.0000000 0.8679507
fred 0.9722632 0.9728784 0.8679507 1.0000000

▶ All correlations are high: 𝑥’s with punt (good) and with each
other (bad, at least confusing).

▶ What to do? Probably do just as well to pick one variable, say
right since kickers are right-footed.



Just right
punting.2 <- lm(punt ~ right, data = punting)
summary(punting.2)

Call:
lm(formula = punt ~ right, data = punting)

Residuals:
Min 1Q Median 3Q Max

-15.7576 -11.0611 0.3656 7.8890 19.0423

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.6930 25.2649 -0.146 0.886
right 1.0427 0.1692 6.162 7.09e-05 ***
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 13.36 on 11 degrees of freedom
Multiple R-squared: 0.7754, Adjusted R-squared: 0.7549
F-statistic: 37.97 on 1 and 11 DF, p-value: 7.088e-05
anova(punting.2, punting.1)

Analysis of Variance Table

Model 1: punt ~ right
Model 2: punt ~ left + right + fred

Res.Df RSS Df Sum of Sq F Pr(>F)
1 11 1962.5
2 9 1938.2 2 24.263 0.0563 0.9456
punting.3 <- lm(punt ~ left, data = punting)
summary(punting.3)

Call:
lm(formula = punt ~ left, data = punting)

Residuals:
Min 1Q Median 3Q Max

-22.840 -12.298 -2.234 8.990 35.820

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.8834 30.1575 0.427 0.677474
left 0.9553 0.2072 4.610 0.000753 ***
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 16.46 on 11 degrees of freedom
Multiple R-squared: 0.6589, Adjusted R-squared: 0.6279
F-statistic: 21.25 on 1 and 11 DF, p-value: 0.0007528

No significant loss by dropping other two variables.



Comparing R-squareds

summary(punting.1)$r.squared

[1] 0.7781401
summary(punting.2)$r.squared

[1] 0.7753629

Basically no difference. In regression (over), right significant:



Regression results

tidy(punting.2)

# A tibble: 2 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) -3.69 25.3 -0.146 0.886
2 right 1.04 0.169 6.16 0.0000709



But…

▶ Maybe we got the form of the relationship with left wrong.
▶ Check: plot residuals from previous regression (without left)

against left.
▶ Residuals here are “punting distance adjusted for right leg

strength”.
▶ If there is some kind of relationship with left, we should

include in model.
▶ Plot of residuals against original variable: augment from

broom.



Augmenting punting.2
punting.2 %>% augment(punting) -> punting.2.aug
punting.2.aug

# A tibble: 13 x 10
left right punt fred .fitted .resid .hat .sigma

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 170 170 162. 171 174. -11.1 0.157 13.5
2 130 140 144 136 142. 1.72 0.0864 14.0
3 170 180 174. 174 184. -9.49 0.244 13.6
4 160 160 164. 161 163. 0.366 0.101 14.0
5 150 170 192 159 174. 18.4 0.157 12.5
6 150 150 172. 151 153. 19.0 0.0778 12.5
7 180 170 162 174 174. -11.6 0.157 13.4
8 110 110 105. 111 111. -6.17 0.305 13.8
9 110 120 106. 114 121. -15.8 0.2 12.9

10 120 130 118. 126 132. -14.3 0.127 13.1
11 140 120 140. 129 121. 18.8 0.2 12.3
12 130 140 150. 136 142. 7.89 0.0864 13.8
13 150 160 165. 154 163. 2.04 0.101 14.0
# i 2 more variables: .cooksd <dbl>, .std.resid <dbl>



Residuals against left

ggplot(punting.2.aug, aes(x = left, y = .resid)) +
geom_point()
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Comments

▶ There is a curved relationship with left.
▶ We should add left-squared to the regression (and therefore

put left back in when we do that):
punting.3 <- lm(punt ~ left + I(left^2) + right,
data = punting

)



Regression with left-squared
summary(punting.3)

Call:
lm(formula = punt ~ left + I(left^2) + right, data = punting)

Residuals:
Min 1Q Median 3Q Max

-11.3777 -5.3599 0.0459 4.5088 13.2669

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.623e+02 9.902e+01 -4.669 0.00117 **
left 6.888e+00 1.462e+00 4.710 0.00110 **
I(left^2) -2.302e-02 4.927e-03 -4.672 0.00117 **
right 7.396e-01 2.292e-01 3.227 0.01038 *
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.931 on 9 degrees of freedom
Multiple R-squared: 0.9352, Adjusted R-squared: 0.9136
F-statistic: 43.3 on 3 and 9 DF, p-value: 1.13e-05



Comments

▶ This was definitely a good idea (R-squared has clearly
increased).

▶ We would never have seen it without plotting residuals from
punting.2 (without left) against left.

▶ Negative slope for leftsq means that increased left-leg
strength only increases punting distance up to a point:
beyond that, it decreases again.


