Vector and matrix algebra

Packages for this section

This is (almost) all base R! We only need this for one thing later:

library(tidyverse)

Vector addition

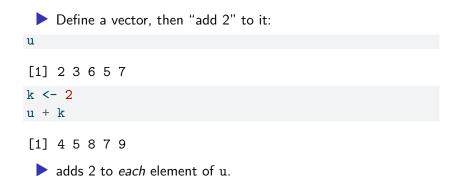
Adds 2 to each element.

Adding vectors: u <- c(2, 3, 6, 5, 7) v <- c(1, 8, 3, 2, 0) u + v

[1] 3 11 9 7 7

Elementwise addition. (Linear algebra: vector addition.)

Adding a number to a vector



Scalar multiplication

As per linear algebra:

k
[1] 2
u
[1] 2 3 6 5 7
k * u
[1] 4 6 12 10 14

Each element of vector multiplied by 2.

"Vector multiplication"

What about this? u [1] 2 3 6 5 7 v [1] 1 8 3 2 0 u * v

[1] 2 24 18 10 0

Each element of u multiplied by *corresponding* element of v. Could be called elementwise multiplication.

(Don't confuse with "outer" or "vector" product from linear algebra, or indeed "inner" or "scalar" multiplication, for which the answer is a number.)

Combining different-length vectors

No error here (you get a warning). What happens?

 $\begin{bmatrix} 1 \end{bmatrix} 2 3 6 5 7$ w <- c(1, 2)u + w

u

[1] 3 5 7 7 8

Add 1 to first element of u, add 2 to second.
Go back to beginning of w to find something to add: add 1 to 3rd element of u, 2 to 4th element, 1 to 5th.

How R does this

- Keep re-using shorter vector until reach length of longer one.
 "Recycling".
- If the longer vector's length not a multiple of the shorter vector's length, get a warning (probably not what you want).
- Same idea is used when multiplying a vector by a number: the number keeps getting recycled.

Matrices

Create matrix like this:
(A <- matrix(1:4, nrow = 2, ncol = 2))

[,1] [,2]
[1,] 1 3
[2,] 2 4

First: stuff to make matrix from, then how many rows and columns.

R goes down columns by default. To go along rows instead:

(B <- matrix(5:8, nrow = 2, ncol = 2, byrow = TRUE))

[,1] [,2] [1,] 5 6 [2,] 7 8

One of nrow and ncol enough, since R knows how many things in the matrix.

Adding matrices

What happens if you add two matrices?

А		
[,1] [1,] 1 [2,] 2		
В		
[,1] [1,] 5 [2,] 7	6	
A + B		
[,1] [1,] 6	[,2] 9	

Adding matrices

Nothing surprising here. This is matrix addition as we and linear algebra know it.

Multiplying matrices

Now, what happens here?
A
[,1] [,2] [1,] 1 3 [2,] 2 4 B
Ц
[,1] [,2] [1,] 5 6 [2,] 7 8
A * B
[,1] [,2] [1,] 5 18 [2,] 14 32

Multiplying matrices?

Not matrix multiplication (as per linear algebra).
 Elementwise multiplication. Also called *Hadamard product* of A and B.

Legit matrix multiplication

Like this:		
A		
[1,]] [,2] 1 3 2 4	
В		
[1,]][,2] 56 78	
A %*% B		
[1,] 2] [,2] 6 30 8 44	

Reading matrix from file

```
The usual:
```

```
my_url <- "http://ritsokiguess.site/datafiles/m.txt"
M <- read_delim(my_url, " ", col_names = FALSE )
M</pre>
```

```
# A tibble: 3 x 2
    X1 X2
    <dbl> <dbl>
1 10 9
2 8 7
3 6 5
```

class(M)

[1] "spec_tbl_df" "tbl_df" "tbl" "data.frame"

except that M is not an R matrix, and thus this doesn't work: v <- c(1, 3) M %*% v

Error in M %*% v: requires numeric/complex matrix/vector as

Ma	king a genuine matrix Do this first:
	M <- as.matrix(M) M
	X1 X2 [1,] 10 9 [2,] 8 7 [3,] 6 5
	[1] 1 3
	and then all is good:
	M %*% v
	[,1] [1,] 37 [2,] 29

[3] 21

Linear algebra stuff

To solve system of equations $Ax = w$ for x:
A
[,1] [,2]
[1,] 1 3
[2,] 2 4
W
[1] 1 2
solve(A, w)
[1] 1 0

Matrix inverse

To find the inverse of A:
A
[,1] [,2] [1,] 1 3 [2,] 2 4
solve(A)
[,1] [,2] [1,] -2 1.5 [2,] 1 -0.5

You can check that the matrix inverse and equation solution are correct.

Inner product

Vectors in R are column vectors, so just do the matrix multiplication (t() is transpose):

a <- c(1, 2, 3) b <- c(4, 5, 6) t(a) %*% b

[,1] [1,] 32

Note that the answer is actually a 1×1 matrix.

Or as the sum of the elementwise multiplication:

sum(a * b)

[1] 32

Accessing parts of vector

use square brackets and a number to get elements of a vector [1] 4 5 6 b[2] [1] 5

Accessing parts of matrix

use a row and column index to get an element of a matrix Α [,1] [,2] [1,] 1 3 [2,] 2 4 A[2,1][1] 2 leave the row or column index empty to get whole row or

column, eg.

A[1,]

[1] 1 3

Eigenvalues and eigenvectors

For a matrix A, these are scalars λ and vectors v that solve

 $Av = \lambda v$

In R, eigen gets these:

А

[,1] [,2] [1,] 1 3 [2,] 2 4 e <- eigen(A)

Eigenvalues and eigenvectors

е

eigen() decomposition \$values [1] 5.3722813 -0.3722813

\$vectors

[,1] [,2] [1,] -0.5657675 -0.9093767 [2,] -0.8245648 0.4159736 To check that the eigenvalues/vectors are correct

> $\lambda_1 v_1$: (scalar) multiply first eigenvalue by first eigenvector (in column)

e\$values[1] * e\$vectors[,1]

[1] -3.039462 -4.429794

Av₁: (matrix) multiply matrix by first eigenvector (in column)
A %*% e\$vectors[,1]

[,1] [1,] -3.039462 [2,] -4.429794

These are (correctly) equal.

The second one goes the same way.

A statistical application of eigenvalues

A negative correlatior	1:
d <- tribble(
~x, ~y,	
10, 20,	
11, 18,	
12, 17,	
13, 14,	
14, 13	
)	
v <- cor(d)	
v	

x y x 1.0000000 -0.9878783 y -0.9878783 1.0000000

 cor gives the correlation matrix between each pair of variables (correlation between x and y is -0.988)

Eigenanalysis of correlation matrix

eigen(v)

eigen() decomposition \$values [1] 1.98787834 0.01212166

\$vectors

- [,1] [,2] [1,] -0.7071068 -0.7071068 [2,] 0.7071068 -0.7071068
 - first eigenvalue much bigger than second (second one near zero)
 - two variables, but data nearly one-dimensional
 - opposite signs in first eigenvector indicate that the one dimension is:
 - x small and y large at one end,
 - x large and y small at the other.