
Vector and matrix algebra



Packages for this section

▶ This is (almost) all base R! We only need this for one thing
later:

library(tidyverse)



Vector addition

Adds 2 to each element.
▶ Adding vectors:

u <- c(2, 3, 6, 5, 7)
v <- c(1, 8, 3, 2, 0)
u + v

[1] 3 11 9 7 7

▶ Elementwise addition. (Linear algebra: vector addition.)



Adding a number to a vector

▶ Define a vector, then “add 2” to it:
u

[1] 2 3 6 5 7
k <- 2
u + k

[1] 4 5 8 7 9

▶ adds 2 to each element of u.



Scalar multiplication

As per linear algebra:
k

[1] 2
u

[1] 2 3 6 5 7
k * u

[1] 4 6 12 10 14

▶ Each element of vector multiplied by 2.



“Vector multiplication”

What about this?
u

[1] 2 3 6 5 7
v

[1] 1 8 3 2 0
u * v

[1] 2 24 18 10 0

Each element of u multiplied by corresponding element of v. Could
be called elementwise multiplication.

(Don’t confuse with “outer” or “vector” product from linear
algebra, or indeed “inner” or “scalar” multiplication, for which the
answer is a number.)



Combining different-length vectors

▶ No error here (you get a warning). What happens?
u

[1] 2 3 6 5 7
w <- c(1, 2)
u + w

[1] 3 5 7 7 8

▶ Add 1 to first element of u, add 2 to second.
▶ Go back to beginning of w to find something to add: add 1 to

3rd element of u, 2 to 4th element, 1 to 5th.



How R does this

▶ Keep re-using shorter vector until reach length of longer one.
▶ “Recycling”.
▶ If the longer vector’s length not a multiple of the shorter

vector’s length, get a warning (probably not what you want).
▶ Same idea is used when multiplying a vector by a number: the

number keeps getting recycled.



Matrices
▶ Create matrix like this:

(A <- matrix(1:4, nrow = 2, ncol = 2))

[,1] [,2]
[1,] 1 3
[2,] 2 4

▶ First: stuff to make matrix from, then how many rows and
columns.

▶ R goes down columns by default. To go along rows instead:
(B <- matrix(5:8, nrow = 2, ncol = 2, byrow = TRUE))

[,1] [,2]
[1,] 5 6
[2,] 7 8

▶ One of nrow and ncol enough, since R knows how many
things in the matrix.



Adding matrices
What happens if you add two matrices?
A

[,1] [,2]
[1,] 1 3
[2,] 2 4
B

[,1] [,2]
[1,] 5 6
[2,] 7 8
A + B

[,1] [,2]
[1,] 6 9
[2,] 9 12



Adding matrices

▶ Nothing surprising here. This is matrix addition as we and
linear algebra know it.



Multiplying matrices
▶ Now, what happens here?

A

[,1] [,2]
[1,] 1 3
[2,] 2 4
B

[,1] [,2]
[1,] 5 6
[2,] 7 8
A * B

[,1] [,2]
[1,] 5 18
[2,] 14 32



Multiplying matrices?

▶ Not matrix multiplication (as per linear algebra).
▶ Elementwise multiplication. Also called Hadamard product of

A and B.



Legit matrix multiplication
Like this:
A

[,1] [,2]
[1,] 1 3
[2,] 2 4
B

[,1] [,2]
[1,] 5 6
[2,] 7 8
A %*% B

[,1] [,2]
[1,] 26 30
[2,] 38 44



Reading matrix from file

▶ The usual:
my_url <- "http://ritsokiguess.site/datafiles/m.txt"
M <- read_delim(my_url, " ", col_names = FALSE )
M

# A tibble: 3 x 2
X1 X2

<dbl> <dbl>
1 10 9
2 8 7
3 6 5
class(M)

[1] "spec_tbl_df" "tbl_df" "tbl" "data.frame"



but…

▶ except that M is not an R matrix, and thus this doesn’t work:
v <- c(1, 3)
M %*% v

Error in M %*% v: requires numeric/complex matrix/vector arguments



Making a genuine matrix
Do this first:
M <- as.matrix(M)
M

X1 X2
[1,] 10 9
[2,] 8 7
[3,] 6 5
v

[1] 1 3

and then all is good:
M %*% v

[,1]
[1,] 37
[2,] 29
[3,] 21



Linear algebra stuff

▶ To solve system of equations 𝐴𝑥 = 𝑤 for 𝑥:
A

[,1] [,2]
[1,] 1 3
[2,] 2 4
w

[1] 1 2
solve(A, w)

[1] 1 0



Matrix inverse

▶ To find the inverse of A:
A

[,1] [,2]
[1,] 1 3
[2,] 2 4
solve(A)

[,1] [,2]
[1,] -2 1.5
[2,] 1 -0.5

▶ You can check that the matrix inverse and equation solution
are correct.



Inner product

▶ Vectors in R are column vectors, so just do the matrix
multiplication (t() is transpose):

a <- c(1, 2, 3)
b <- c(4, 5, 6)
t(a) %*% b

[,1]
[1,] 32

▶ Note that the answer is actually a 1 × 1 matrix.
▶ Or as the sum of the elementwise multiplication:

sum(a * b)

[1] 32



Accessing parts of vector

▶ use square brackets and a number to get elements of a vector
b

[1] 4 5 6
b[2]

[1] 5



Accessing parts of matrix

▶ use a row and column index to get an element of a matrix
A

[,1] [,2]
[1,] 1 3
[2,] 2 4
A[2,1]

[1] 2

▶ leave the row or column index empty to get whole row or
column, eg.

A[1,]

[1] 1 3



Eigenvalues and eigenvectors

▶ For a matrix 𝐴, these are scalars 𝜆 and vectors 𝑣 that solve

𝐴𝑣 = 𝜆𝑣

▶ In R, eigen gets these:
A

[,1] [,2]
[1,] 1 3
[2,] 2 4
e <- eigen(A)



Eigenvalues and eigenvectors

e

eigen() decomposition
$values
[1] 5.3722813 -0.3722813

$vectors
[,1] [,2]

[1,] -0.5657675 -0.9093767
[2,] -0.8245648 0.4159736



To check that the eigenvalues/vectors are correct

▶ 𝜆1𝑣1: (scalar) multiply first eigenvalue by first eigenvector (in
column)

e$values[1] * e$vectors[,1]

[1] -3.039462 -4.429794

▶ 𝐴𝑣1: (matrix) multiply matrix by first eigenvector (in column)
A %*% e$vectors[,1]

[,1]
[1,] -3.039462
[2,] -4.429794

▶ These are (correctly) equal.
▶ The second one goes the same way.



A statistical application of eigenvalues

▶ A negative correlation:
d <- tribble(

~x, ~y,
10, 20,
11, 18,
12, 17,
13, 14,
14, 13

)
v <- cor(d)
v

x y
x 1.0000000 -0.9878783
y -0.9878783 1.0000000

▶ cor gives the correlation matrix between each pair of variables
(correlation between x and y is −0.988)



Eigenanalysis of correlation matrix
eigen(v)

eigen() decomposition
$values
[1] 1.98787834 0.01212166

$vectors
[,1] [,2]

[1,] -0.7071068 -0.7071068
[2,] 0.7071068 -0.7071068

▶ first eigenvalue much bigger than second (second one near
zero)

▶ two variables, but data nearly one-dimensional
▶ opposite signs in first eigenvector indicate that the one

dimension is:
▶ x small and y large at one end,
▶ x large and y small at the other.


