
When pivot-wider goes wrong

Packages

The inevitable:
library(tidyverse)

Some long data that should be wide

A tibble: 6 x 3
obs time y

<dbl> <chr> <dbl>
1 1 pre 19
2 2 post 18
3 3 pre 17
4 4 post 16
5 5 pre 15
6 6 post 14

▶ Six observations of variable y, but three measured before
some treatment and three measured after.

▶ Really matched pairs, so want column of y-values for pre and
for post.

▶ pivot_wider.

What happens here?
d %>% pivot_wider(names_from = time, values_from = y)

A tibble: 6 x 3
obs pre post

<dbl> <dbl> <dbl>
1 1 19 NA
2 2 NA 18
3 3 17 NA
4 4 NA 16
5 5 15 NA
6 6 NA 14

▶ Should be three pre values and three post. Why did this
happen?

▶ pivot_wider needs to know which row to put each
observation in.

▶ Uses combo of columns not named in pivot_wider, here obs
(only).

The problem

d %>% pivot_wider(names_from = time, values_from = y)

A tibble: 6 x 3
obs pre post

<dbl> <dbl> <dbl>
1 1 19 NA
2 2 NA 18
3 3 17 NA
4 4 NA 16
5 5 15 NA
6 6 NA 14

▶ There are 6 different obs values, so 6 different rows.
▶ No data for obs 2 and pre, so that cell missing (NA).
▶ Not enough data (6 obs) to fill 12 (= 2 × 6) cells.
▶ obs needs to say which subject provided which 2 observations.

Fixing it up

A tibble: 6 x 3
subject time y

<dbl> <chr> <dbl>
1 1 pre 19
2 1 post 18
3 2 pre 17
4 2 post 16
5 3 pre 15
6 3 post 14

▶ column subject shows which subject provided each pre and
post.

▶ when we do pivot_wider, now only 3 rows, one per subject.

Coming out right

d2 %>% pivot_wider(names_from = time, values_from = y)

A tibble: 3 x 3
subject pre post

<dbl> <dbl> <dbl>
1 1 19 18
2 2 17 16
3 3 15 14

▶ row each observation goes to determined by other column
subject, and now a pre and post for each subject.

▶ right layout for matched pairs 𝑡 or to make differences for sign
test or normal quantile plot.

▶ “spaghetti plot” needs data longer, as d2.

Spaghetti plot
d2 %>% mutate(time = fct_inorder(time)) %>%

ggplot(aes(x = time, y = y, group = subject)) +
geom_point() + geom_line()

14

15

16

17

18

19

pre post
time

y

▶ each subject’s y decreases over time, with subject 1 highest
overall.

Another example

▶ Two independent samples this time

A tibble: 8 x 2
group y
<chr> <dbl>

1 control 8
2 control 11
3 control 13
4 control 14
5 treatment 12
6 treatment 15
7 treatment 16
8 treatment 17

▶ These should be arranged like this
▶ but what if we make them wider?

Wider

d3 %>% pivot_wider(names_from = group, values_from = y)

A tibble: 1 x 2
control treatment
<list> <list>

1 <dbl [4]> <dbl [4]>

▶ row determined by what not used for pivot_wider: nothing!
▶ everything smooshed into one row!
▶ this time, too much data for the layout.
▶ Four data values squeezed into each of the two cells:

“list-columns”.

Get the data out

▶ To expand list-columns out into the data values they contain,
can use unnest:

d3 %>% pivot_wider(names_from = group, values_from = y) %>%
unnest(c(control, treatment))

A tibble: 4 x 2
control treatment

<dbl> <dbl>
1 8 12
2 11 15
3 13 16
4 14 17

▶ in this case, wrong layout, because data values not paired.

A proper use of list-columns

d3 %>% nest_by(group) %>%
summarize(n = nrow(data),

mean_y = mean(data$y),
sd_y = sd(data$y))

A tibble: 2 x 4
Groups: group [2]

group n mean_y sd_y
<chr> <int> <dbl> <dbl>

1 control 4 11.5 2.65
2 treatment 4 15 2.16

▶ another way to do group_by and summarize to find stats by
group.

▶ run this one piece at a time to see what it does.

