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You may assume throughout this exam that the code shown in Figure 1 of the booklet of Figures has already been
run.

The University of Toronto’s Code of Behaviour on Academic Matters applies to all University of Toronto Scarborough
students. The Code prohibits all forms of academic dishonesty including, but not limited to, cheating, plagiarism,
and the use of unauthorized aids. Students violating the Code may be subject to penalties up to and including
suspension or expulsion from the University.
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Hawks

A “blind” is a place where people can watch wild animals or birds without being noticed
by them. A college maintains a hawk blind at Lake MacBride, Iowa, where students can
observe hawk and other birds. Birds of two species of hawk, Cooper’s Hawk (CH in the
data file) and Red-tailed Hawk (RT in the data file) were captured, weighed and then
released; the weight was measured in grams. Some of the data file is shown in Figure 2
(the remaining lines are laid out in the same way). The data file is called hawks.txt, and
is in the same folder in which you are currently running R Studio.

(1) (3 points) What code would read the data from the file into a dataframe called hawks,
and display at least some of the dataframe that was read in?

The data file is laid out as (depending how you look at it) aligned columns, or as columns
with varying numbers of spaces between them. Either way, the right thing is read_table:

hawks <- read_table("hawks.txt")

-- Column specification --------------------------------------------------------
cols(
species = col_character(),
weight = col_double()

)

hawks

# A tibble: 642 x 2
species weight
<chr> <dbl>

1 RT 920
2 RT 930
3 RT 990
4 CH 470
5 RT 1090
6 RT 960
7 RT 855
8 RT 1210
9 RT 1120
10 RT 1010
# i 632 more rows
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Two points for getting the read_table right, and one for something that will display at
least some of the dataframe (View(hawks), for example, would also work).

Some things that will not work, and earn no points:

• read_delim (the data values are not separated by a single anything; there are some-
times three and sometimes two spaces between the data values)

• read_tsv (if the data values were separated by tabs, the weight values would be
aligned on the left)

• read.table (not taught in this course. Make sure your underscore looks like an
underscore and not a dot.)

One of these, followed by something that would correctly display the dataframe, if the
reading-in had been correct, is one point total.

(2) (3 points) What code will calculate and display the mean and standard deviation of
weight, and the number of hawks observed, for each species of hawk?

As with anything else in this exam, if I ask for code (only), I do not need to see the output
(and you will probably not know what the output is). If I want to know what output some
code will produce, I will ask you for that.

This is a standard group-by and summarize. The summaries can be in any order, but the
group_by must be first:

hawks %>% group_by(species) %>%
summarize(n = n(), mean_weight = mean(weight), sd_weight = sd(weight))

# A tibble: 2 x 4
species n mean_weight sd_weight
<chr> <int> <dbl> <dbl>

1 CH 70 420. 162.
2 RT 572 1094. 189.

One point for having group_by first, and a further two points for getting the summarize
right. Minus a half point per error or missing item down to a minimum of a half point
if something in the summarize is correct (for example, having a summarize but having
nothing else correct).

(3) (2 points) What code will draw a suitable graph of the two variables in this dataframe?
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One categorical and one quantitative, so a boxplot (no surprises). Only two points for this
rather simple code:

ggplot(hawks, aes(x = species, y = weight)) + geom_boxplot()
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As with the corresponding question on the midterm, having the x and y the other way
around is wrong unless you say something that shows you know what you are doing, such
as stating that your boxplot will be horizontal rather than vertical and then drawing this:

ggplot(hawks, aes(y = species, x = weight)) + geom_boxplot()



STAC32 Final Exam December 11, 2024 5

CH

RT

0 500 1000 1500 2000
weight

sp
ec

ie
s

Seeing this now, you will realize that there are a lot of outliers, and thus if you had seen
this, you might have preferred not to run a 𝑡-test later. But on the exam, you had no way
to know.

One out of two for having the x and y the wrong way around without explanation, minus
a half per small error otherwise. Since we are not (at this stage) interested in whether the
distributions of weights are normal, drawing a (facetted) normal quantile plot is not the
best, and earns 1/2 if correctly drawn.

(4) (2 points) What code will display the species and weight of all the hawks that weigh
less than 300 grams?

This is choosing some of the hawks (observations), so it needs filter. There is no choice
of columns (we are displaying all of them), so there is no select needed:

hawks %>% filter(weight < 300)

# A tibble: 11 x 2
species weight
<chr> <dbl>

1 RT 101
2 CH 183
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3 CH 163
4 CH 187
5 RT 280
6 CH 56
7 CH 229
8 CH 155
9 RT 235
10 RT 240
11 CH 295

The boxplot (now that we can see it) indicates that the red-tailed hawks are on average
heavier, but there are quite a few red-tailed hawks in among the Cooper’s hawks, namely
the low-end outliers of the red-tailed hawks.

One point for getting to a filter and messing up the condition; minus a half for including
a select unnecessarily.

(5) (3 points) What code will display only the weights of only the five heaviest Cooper’s
Hawks?

I think the best way is to grab the Cooper’s Hawks first, then find the five heaviest of
them:

hawks %>%
filter(species == "CH") %>%
slice_max(weight, n = 5) %>%
select(weight)

# A tibble: 5 x 1
weight
<dbl>

1 1119
2 960
3 742
4 640
5 590

or sort and then slice:



STAC32 Final Exam December 11, 2024 7

hawks %>%
filter(species == "CH") %>%
arrange(desc(weight)) %>%
slice(1:5) %>%
select(weight)

# A tibble: 5 x 1
weight
<dbl>

1 1119
2 960
3 742
4 640
5 590

Another option is to use group_by, but this doesn’t quite work:

hawks %>%
group_by(species) %>%
slice_max(weight, n = 5) %>%
filter(species == "CH") %>%
select(weight)

Adding missing grouping variables: `species`

# A tibble: 5 x 2
species weight
<chr> <dbl>

1 CH 1119
2 CH 960
3 CH 742
4 CH 640
5 CH 590

The grouping variable species “comes along for the ride” this way, which we don’t want.
The correct approach is actually this:
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hawks %>%
group_by(species) %>%
slice_max(weight, n = 5) %>%
filter(species == "CH") %>%
ungroup() %>%
select(weight)

# A tibble: 5 x 1
weight
<dbl>

1 1119
2 960
3 742
4 640
5 590

We have seen ungroup in the context of nest_by, I think. I wouldn’t expect you to know
that this will be required, so 2.5 if you can get as far as the way without the ungroup (since
it will not quite work). The filter-first approach is much the safer way to go, because then
you are not dealing with the intricacies of grouping, and it will be much clearer to you that
it will work.

The first three lines find the five heaviest hawks for each species, because when you have
groups, things are done within each group:

hawks %>%
group_by(species) %>%
slice_max(weight, n = 5)

# A tibble: 11 x 2
species weight
<chr> <dbl>

1 CH 1119
2 CH 960
3 CH 742
4 CH 640
5 CH 590
6 RT 2030
7 RT 1670



STAC32 Final Exam December 11, 2024 9

8 RT 1598
9 RT 1595
10 RT 1585
11 RT 1585

There are eleven lines because this finds the largest five weights in each group including
ties, and there are two red-tailed hawks that weighed 1585 grams.

(6) (2 points) A dataframe hawk_names is shown in Figure 3. What code would use this
dataframe, as well as dataframe hawks, to create a dataframe that contains the full
names of the species of each hawk, along with each hawk’s weight? The dataframe
produced by your code may contain other columns, and you do not need to save it.

This is looking up the values in one dataframe in another, so it is a join. The simplest is
this way:

hawks %>% left_join(hawk_names)

Joining with `by = join_by(species)`

# A tibble: 642 x 3
species weight species_name
<chr> <dbl> <chr>

1 RT 920 Red-tailed
2 RT 930 Red-tailed
3 RT 990 Red-tailed
4 CH 470 Cooper
5 RT 1090 Red-tailed
6 RT 960 Red-tailed
7 RT 855 Red-tailed
8 RT 1210 Red-tailed
9 RT 1120 Red-tailed
10 RT 1010 Red-tailed
# i 632 more rows

It is, as stated in the question, no problem to keep the column species as well. (When
you are doing one of these outside of an exam, it’s a good idea to make sure that the things
in the new column(s) you have added do indeed match up with the original columns.)

That said, I think it is actually clearer to explicitly say what you are joining by, ie. this:
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hawks %>% left_join(hawk_names, join_by(species))

# A tibble: 642 x 3
species weight species_name
<chr> <dbl> <chr>

1 RT 920 Red-tailed
2 RT 930 Red-tailed
3 RT 990 Red-tailed
4 CH 470 Cooper
5 RT 1090 Red-tailed
6 RT 960 Red-tailed
7 RT 855 Red-tailed
8 RT 1210 Red-tailed
9 RT 1120 Red-tailed
10 RT 1010 Red-tailed
# i 632 more rows

The first way works because both dataframes have a column called species that is the
only column with the same name in both dataframes, so that will be used to join-by. Two
points for either of those.

This also works, though, to my mind, more confusingly:

hawk_names %>% right_join(hawks)

Joining with `by = join_by(species)`

# A tibble: 642 x 3
species species_name weight
<chr> <chr> <dbl>

1 CH Cooper 470
2 CH Cooper 324
3 CH Cooper 340
4 CH Cooper 340
5 CH Cooper 475
6 CH Cooper 340
7 CH Cooper 420
8 CH Cooper 365
9 CH Cooper 183
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10 CH Cooper 390
# i 632 more rows

The columns come out in a different order, but that is no problem.

I find this more confusing because my mental model is that you have a dataframe with
actual data in it, and then you have a lookup table (that you got from somewhere else)
with the additional information in it. To me, therefore, the data are first, and the lookup
table is second.

If you can get the right-join correct, two points for that also.

If you get the join the wrong way around, you get this kind of thing:

hawk_names %>% left_join(hawks)

Joining with `by = join_by(species)`

# A tibble: 643 x 3
species species_name weight
<chr> <chr> <dbl>

1 SS Sharp-shinned NA
2 CH Cooper 470
3 CH Cooper 324
4 CH Cooper 340
5 CH Cooper 340
6 CH Cooper 475
7 CH Cooper 340
8 CH Cooper 420
9 CH Cooper 365
10 CH Cooper 183
# i 633 more rows

which has an extra row at the top, because left_join has at least one row in the result
for everything in the first dataframe, including the species SS that we didn’t observe any
of (thus the answer has one more row than it should). Doing it the right way around gets
us (exactly) one row for each observation in hawks, which is exactly what we want. One
point only for this, for recognizing that you needed a join but not which way around it
needed to be. This, therefore, is also one point:
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hawks %>% right_join(hawk_names)

Joining with `by = join_by(species)`

# A tibble: 643 x 3
species weight species_name
<chr> <dbl> <chr>

1 RT 920 Red-tailed
2 RT 930 Red-tailed
3 RT 990 Red-tailed
4 CH 470 Cooper
5 RT 1090 Red-tailed
6 RT 960 Red-tailed
7 RT 855 Red-tailed
8 RT 1210 Red-tailed
9 RT 1120 Red-tailed
10 RT 1010 Red-tailed
# i 633 more rows

(7) (1 point) In the dataframe hawk_names, suppose the column called species had
instead been called abb (short for “abbreviation”). How would your code from the
previous question need to change in order to achieve the same result?

Let’s see. First change the column name as given in the question:

hawk_names %>% rename("abb" = "species") -> hawk_names
hawk_names

# A tibble: 3 x 2
abb species_name
<chr> <chr>

1 SS Sharp-shinned
2 CH Cooper
3 RT Red-tailed

and then do this:
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hawks %>% left_join(hawk_names, join_by("species" == "abb"))

# A tibble: 642 x 3
species weight species_name
<chr> <dbl> <chr>

1 RT 920 Red-tailed
2 RT 930 Red-tailed
3 RT 990 Red-tailed
4 CH 470 Cooper
5 RT 1090 Red-tailed
6 RT 960 Red-tailed
7 RT 855 Red-tailed
8 RT 1210 Red-tailed
9 RT 1120 Red-tailed
10 RT 1010 Red-tailed
# i 632 more rows

So your answer needs to be something like: in the left_join, include join_by("species"
== "abb"). This is only one point, so the important thing your answer needs to contain
is join_by("species" == "abb").

What ends up happening is that the column name in the result is taken from the first
dataframe hawks (that is, species): the corresponding column in hawk_names is tem-
porarily renamed back to species and then the lookup is done, so that abb seems to
disappear (but it actually doesn’t).

If you insist on doing this one as a right-join, you have to remember to switch the join_by
around as well, because “the first dataframe” and “the second dataframe” have switched
around:

hawk_names %>% right_join(hawks, join_by("abb" == "species"))

# A tibble: 642 x 3
abb species_name weight
<chr> <chr> <dbl>

1 CH Cooper 470
2 CH Cooper 324
3 CH Cooper 340
4 CH Cooper 340
5 CH Cooper 475
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6 CH Cooper 340
7 CH Cooper 420
8 CH Cooper 365
9 CH Cooper 183
10 CH Cooper 390
# i 632 more rows

The hawks come out in a different order. Because you started off with hawk_names, which
has Cooper’s hawks first, these are the ones that are first in the result. But the same hawks
are all there somewhere; for example, the first Cooper’s hawk in the previous outputs
weighed 470 grams, which is the same hawk as the first one here.

If your answer is join_by("abb" == "species"), the grader will need to check back to
the previous part and make sure you actually did do a right-join. If you didn’t, you only
get 0.5.

(8) (3 points) Some code and output is shown in Figure 4. What do you conclude from
it, in the context of the data? Explain, showing your logic clearly.

This is a hypothesis test, specifically a two-sample test comparing the weights of the two
species of hawks. So:

• null hypothesis: the two species of hawks have the same mean weight
• alternative hypothesis: the two species of hawks have different mean weight (two

clues: the output says “not equal”, with the bit cut off being “to zero”, and there is
no alternative in the code, so the test must be two-sided)

• The P-value is less that 2.2 × 10−16 (I would accept words like “extremely small”)
• The P-value is smaller than 0.05 (or other 𝛼 of your choosing)
• reject the null in favour of the alternative
• conclude that the mean weights of Cooper’s hawks and red-tailed hawks are different.

These ingredients need to be in your answer (or strongly implied by it), and it is clearest
to follow the steps in something like the way I did: make it clear that you know what the
hypotheses are that you are testing, get the P-value, compare it with 0.05, reject the null in
favour of the alternative, say what that means so that someone can make a decision on the
basis of your conclusion. You need to be clear what is hypothesis and what is conclusion.
Writing the hypotheses down first and making a conclusion at the end is a clear way to
keep this straight. This is why I said “showing your logic clearly” in the question; this is
not a first-year course in which you write some stuff down and hope that the right answer is
in there somewhere, but an upper-level course in which you need to be logically convincing
(which is an academic way of saying “show that you know what you are doing”).
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Extra 1: this is perhaps not a very interesting test to be doing in this context, but the next
question for an ornithologist is “why are the mean weights different?” This might be a
confirmation of something they already know, such as that red-tailed hawks are in general
bigger, and thus it is no surprise that they are heavier as part of that (in which case they
might have done a one-sided test).

The dataset from which I got these values had all sorts of other information about the hawks
they caught, such as whether each one was adult or young and male or female, along with
a lot of other body measurements. You might imagine that you could use this information
to see what distinguishes the species (there were three of them in the original dataset, the
third one being “Sharp-shinned” that appeared in hawk_names). Ornithologists are usually
pretty good at distinguishing bird species by seeing the birds in flight, but if the species are
hard to distinguish, it might be possible to catch a hawk, make the measurements, decide
what species it is on the basis of the measurements, and then let it go again. This is the
domain of discriminant analysis, which we see in D29. I rather like this dataset for that
purpose, so you might be seeing the complete dataset, from which the data in Figure 2
were taken, again later.

Extra 2: let’s go back to the boxplots:

ggplot(hawks, aes(x = species, y = weight)) + geom_boxplot()
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There seem to be a lot of outliers here, and most of them seem to be real outliers in that
they are clearly out beyond the ends of the whiskers (except for the ones near the end
of the upper whisker in the Red-tailed Hawks). Our samples (now that we have seen the
output from our group-by and summarize) are on the big side:

hawks %>% count(species)

# A tibble: 2 x 2
species n
<chr> <int>

1 CH 70
2 RT 572

The Cooper’s Hawks distribution of weights seems less bad, but it also goes with the smaller
sample size, so it is not clear whether these distributions are really normal enough given
the sample sizes. But we know how to address that: bootstrap sampling distributions of
the sample means.

Let’s do the Cooper’s Hawks first:

hawks %>% filter(species == "CH") -> coopers

and then the usual:

tibble(sim = 1:10000) %>%
rowwise() %>%
mutate(my_sample = list(sample(coopers$weight, replace = TRUE))) %>%
mutate(my_mean = mean(my_sample)) %>%
ggplot(aes(sample = my_mean)) + stat_qq() + stat_qq_line()
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The original distribution of weights for these had three not-severe outliers, two at the top
and one at the bottom, and this has created a sampling distribution that is very slightly
skewed to the right, but, in the grand scheme of things, very close to normal nonetheless.

The red-tailed hawks go the same way, with much copying and pasting:

hawks %>% filter(species == "RT") -> reds
tibble(sim = 1:10000) %>%
rowwise() %>%
mutate(my_sample = list(sample(reds$weight, replace = TRUE))) %>%
mutate(my_mean = mean(my_sample)) %>%
ggplot(aes(sample = my_mean)) + stat_qq() + stat_qq_line()
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This distribution had at least five severe outliers (four at the bottom and at least one at
the top), but it also had a very large sample size, over 500 observations. The bootstrap
sampling distribution of the sample mean is, in fact, very much normal even though the
original distribution was far from it, and that shows that the sample size of over 500 was
in fact big enough to overcome the non-normality.

So my overall conclusion is that the 𝑡-test you did earlier was appropriate after all, even
though you may not have expected it to be. It just goes to show how powerful the central
limit theorem is when your samples really are large.

Energy expenditure

Do obese people use more energy on average than lean people? To find out, the total
energy expenditure (in megajoules) was recorded over 24 hours for 22 people. 13 of these
people were lean and 9 were obese. The data are shown in Figure 5, in dataframe energy.
The energy expenditure is shown in column expend, and the classification of each person
as lean or obese is shown in column stature.

(9) (2 points) A graph is shown in Figure 6. On the basis of this graph, and anything else
you have learned about the data so far, explain briefly why any kind of two-sample
𝑡-test would not be appropriate.
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We need both groups to have approximately a normal distribution given the sample size.
The lean group has severe outliers, both lower and upper, so the sufficient normality fails.
(Also, the obese group appears to have a right-skewed distribution, but you don’t need to
consider this once you’ve found one group that fails for sufficient normality. In any case,
the sample size might be big enough for the obese people.)

Two points for finding one group that is not normal enough given its sample size.

Saying that both groups are not normal enough given their sample sizes shows that you
don’t understand: as soon as one group fails to be normal enough, it cannot then be true
that both groups are normal enough, and looking at the other group is then unnecessary.
Minus 0.5.

Extra: the inevitable bootstrapped sampling distributions of the sample means:

energy %>% nest_by(stature)

# A tibble: 2 x 2
stature data
<fct> <list<tibble[,1]>>

1 lean [13 x 1]
2 obese [9 x 1]

The two mini-data-frames in the list-column data have all the other columns that were in
the original dataframe energy, that is to say, just expend, just for each of the people that
were lean, and just for the ones that were obese. The [,1] under data is shorthand for
“this has some number of rows (different for lean and obese), but only one column”.

Now that we have the data we want, let’s set up simulations:

energy %>% nest_by(stature) %>%
mutate(sim = list(1:10000)) %>%
unnest(sim)

# A tibble: 20,000 x 3
stature data sim
<fct> <list<tibble[,1]>> <int>

1 lean [13 x 1] 1
2 lean [13 x 1] 2
3 lean [13 x 1] 3
4 lean [13 x 1] 4
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5 lean [13 x 1] 5
6 lean [13 x 1] 6
7 lean [13 x 1] 7
8 lean [13 x 1] 8
9 lean [13 x 1] 9
10 lean [13 x 1] 10
# i 19,990 more rows

Now, we want a sample from each (from the expend in the appropriate data) and the mean
of each of those samples, in familiar fashion:

energy %>% nest_by(stature) %>%
mutate(sim = list(1:10000)) %>%
unnest(sim) %>%
rowwise() %>%
mutate(my_sample = list(sample(data$expend, replace = TRUE))) %>%
mutate(my_mean = mean(my_sample)) %>%
ggplot(aes(sample = my_mean)) + stat_qq() + stat_qq_line() +

facet_wrap(~stature, scales = "free")
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The last two lines (or, one line broken into two parts) make normal quantile plots, separately
for each group because each group is supposed to have a sampling distribution of the sample
mean that is close to normal. I used scales = "free" because the typical energy usage
of the two groups seems different. Both sets of points are pretty close to their lines, but:

• the lean group is definitely skewed to the right. This is because of those outliers,
and to the right because there were two extreme outliers at the top and only one at
the bottom.1 This may not be as bad as you were expecting, with a sample size of
only 13.

• the obese group is actually not skewed to the right, so that the sample size, even
though only 9, was large enough to overcome that. What happened here is that the
lower tail came out to be short, because the lower tail of the original distribution was
also short. This is not in itself a problem for the t-test, but you only need one group
to go wrong, and the lean group did.

(10) (2 points) What code would run a suitable test to see whether obese people use more
energy on average than lean people? (“Average” can mean either mean or median,
as appropriate.)

Mood’s median test, having ruled out the Welch and pooled 𝑡-tests:

median_test(energy, expend, stature)

$grand_median
[1] 8.595

$table
above

group above below
lean 2 11
obese 9 0

$test
what value

1 statistic 1.523077e+01
2 df 1.000000e+00
3 P-value 9.514059e-05

1I suspect those three or so points at the bottom were when the bootstrap sample happened to contain
three or so copies of the low outlier.
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This is like the code for the sign test one on the midterm: there’s nothing in the code that
makes it one-sided. For the sign test, you get both one-sided P-values and the two-sided
one, but Mood’s median test is by definition two-sided, and we have some more work to
do.

(11) (2 points) The output from the code you gave in the previous part is shown in
Figure 7. What is an appropriate P-value for testing the alternative hypothesis of
interest to us? Explain briefly.

This is output from a Mood’s median test, and so is of course a clue about what test you
need to be providing code for in the previous question. I expect you to recognize the test
that this is output from.

We want to see whether obese people expend more energy on average than lean ones, so
the alternative hypothesis of interest to us is one-sided. The P-value given in Figure 7
is two-sided (because Mood’s median test is based on a chi-squared test, which is always
two-sided), so we have to do two things:

• are we on the correct side?

That is, are our data in favour of our alternative? If you look at the table of aboves
and belows, all 9 of the obese people expended an above-average amount of energy,
while only 2 of the 13 lean people did. This agrees with our alternative hypothesis
that obese people expend more energy on average, so we are indeed on the correct
side.

• If we are on the correct side, we need to divide the P-value by 2.

Having established that we are on the correct side, our P-value is

9.514059e-05 / 2

[1] 4.75703e-05

or 0.000048.

The other, and you might say easier, way to establish that we are on the correct side is
to look back at Figure 6 and note that the obese box is higher than the lean one: hence,
that obese people do use more energy on average than lean ones, at least in the data we
observed.

(12) (3 points) Hence, what do you conclude, in the context of the data?
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“Hence” is a clue: it means “use the thing you just did to answer this question”. (The word
means “from here”.)

We just worked out a one-sided P-value, 0.000048. This is smaller than 0.05. Our null
hypothesis was that lean and obese people use the same amount of energy on average, and
our (one-sided) alternative was that obese people use more energy. We reject the null in
favour of the alternative, and thus conclude that obese people really do use more energy
on average. (Or, “we have evidence that obese people use more energy on average”).

State your P-value (the one from the previous part, even if you got that wrong), compare
it with 0.05 (or similar), draw a conclusion about rejecting the null (or not), and then say
what that means in the context of the data.

If you can get to the right conclusion by the right method without writing down your
hypotheses, go for it, but it is safer to write down your hypotheses as well, so that we can
see that you were drawing a conclusion consistent with them.

Extra: if you were wondering about how the t-test comes out, well, lean is before obese
alphabetically, so:

t.test(expend ~ stature, data = energy, alternative = "less")

Welch Two Sample t-test

data: expend by stature
t = -3.8555, df = 15.919, p-value = 0.0007053
alternative hypothesis: true difference in means between group lean and group obese is less than 0
95 percent confidence interval:

-Inf -1.220763
sample estimates:
mean in group lean mean in group obese

8.066154 10.297778

and the conclusion is actually about the same.

Extra: You are probably expecting to find now a confidence interval for the difference in
medians, but there is no obvious way to do that. Mood’s median test as we have done it
tests only that the medians are the same (by computing the grand median and counting
observations above and below that). To get a confidence interval, we would have to test
whether the medians differed by a certain amount (and then include it in the confidence
interval if that difference was not rejected, as for using the sign test to get a CI for a
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single median), which we do not have a good way to do. This question on Stack Overflow
suggests a couple of ideas. One idea is based on the Hodges-Lehmann estimator, which
is well-known but not quite the right thing for us.2 Another is based on the bootstrap,
which ought to be understandable to us: draw bootstrap samples from each group, take the
difference in medians, and take the middle 95% of that distribution. The starting point is
the same as I did before to assess the normality of the sampling distributions of the sample
means:

energy %>% nest_by(stature)

# A tibble: 2 x 2
stature data
<fct> <list<tibble[,1]>>

1 lean [13 x 1]
2 obese [9 x 1]

with the list-column data containing two mini data frames, one for lean and one for obese,
each with one column called expend. Then we set up 4 bootstrap samples3 from each:

energy %>% nest_by(stature) %>%
mutate(sim = list(1:4)) %>%
unnest(sim) %>%
rowwise() %>%
mutate(my_sample = list(sample(data$expend, replace = TRUE)))

# A tibble: 8 x 4
stature data sim my_sample
<fct> <list<tibble[,1]>> <int> <list>

1 lean [13 x 1] 1 <dbl [13]>
2 lean [13 x 1] 2 <dbl [13]>
3 lean [13 x 1] 3 <dbl [13]>
4 lean [13 x 1] 4 <dbl [13]>
5 obese [9 x 1] 1 <dbl [9]>
6 obese [9 x 1] 2 <dbl [9]>
7 obese [9 x 1] 3 <dbl [9]>
8 obese [9 x 1] 4 <dbl [9]>

2It uses the same idea of “what values would not be rejected by a test”, but from a different test, the
rank sum test, which I think is inferior because it assumes the two distributions you are comparing have
equal spread, in the same way that the pooled t-test does.

3To see whether it works. Once it does, we can scale it up.

https://stats.stackexchange.com/questions/27038/how-to-construct-a-95-confidence-interval-of-the-difference-between-medians
https://en.wikipedia.org/wiki/Hodges%E2%80%93Lehmann_estimator
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Now we need the medians of each of those:

energy %>% nest_by(stature) %>%
mutate(sim = list(1:4)) %>%
unnest(sim) %>%
rowwise() %>%
mutate(my_sample = list(sample(data$expend, replace = TRUE))) %>%
mutate(my_median = median(my_sample))

# A tibble: 8 x 5
stature data sim my_sample my_median
<fct> <list<tibble[,1]>> <int> <list> <dbl>

1 lean [13 x 1] 1 <dbl [13]> 8.11
2 lean [13 x 1] 2 <dbl [13]> 7.48
3 lean [13 x 1] 3 <dbl [13]> 8.08
4 lean [13 x 1] 4 <dbl [13]> 7.9
5 obese [9 x 1] 1 <dbl [9]> 9.21
6 obese [9 x 1] 2 <dbl [9]> 9.68
7 obese [9 x 1] 3 <dbl [9]> 9.19
8 obese [9 x 1] 4 <dbl [9]> 9.21

Here is where things turn different: we want to put the medians for the same simulation
next to each other and subtract them, to get a bootstrap version of what the difference in
medians might look like. This is an unexpected use of group_by and summarize:

energy %>% nest_by(stature) %>%
mutate(sim = list(1:4)) %>%
unnest(sim) %>%
rowwise() %>%
mutate(my_sample = list(sample(data$expend, replace = TRUE))) %>%
mutate(my_median = median(my_sample)) %>%
group_by(sim) %>%
summarize(med1 = my_median[1], med2 = my_median[2])

# A tibble: 4 x 3
sim med1 med2

<int> <dbl> <dbl>
1 1 8.11 9.21
2 2 7.48 9.68
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3 3 8.08 9.19
4 4 7.9 9.21

We group by simulation (to keep things from the same simulation together) and then pull
out the first median that belongs to each simulation (the one from the lean people) and
then the second one (from the obese people). Square brackets are used to grab a particular
median within a group.

Then we take the difference of the two medians within each sim, and pull out the 2.5 and
97.5 percentiles of the whole distribution of the differences (so that 95% of the bootstrap
distribution is between them):

energy %>% nest_by(stature) %>%
mutate(sim = list(1:4)) %>%
unnest(sim) %>%
rowwise() %>%
mutate(my_sample = list(sample(data$expend, replace = TRUE))) %>%
mutate(my_median = median(my_sample)) %>%
group_by(sim) %>%
summarize(med1 = my_median[1], med2 = my_median[2]) %>%
mutate(diff = med1 - med2) %>%
summarize(lwr = quantile(diff, 0.025), upr = quantile(diff, 0.975))

# A tibble: 1 x 2
lwr upr

<dbl> <dbl>
1 -2.13 -1.10

There is our proof of concept, even though it is kind of dopey with only four simulations. So
let’s up the number of simulations to 10,000 (we are using the extremes of the distribution,
so we need more simulations to estimate them accurately):

energy %>% nest_by(stature) %>%
mutate(sim = list(1:10000)) %>%
unnest(sim) %>%
rowwise() %>%
mutate(my_sample = list(sample(data$expend, replace = TRUE))) %>%
mutate(my_median = median(my_sample)) %>%
group_by(sim) %>%
summarize(med1 = my_median[1], med2 = my_median[2]) %>%
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mutate(diff = med1 - med2) %>%
summarize(lwr = quantile(diff, 0.025), upr = quantile(diff, 0.975))

# A tibble: 1 x 2
lwr upr

<dbl> <dbl>
1 -3.98 -1.12

and that, after some considerable effort, is a 95% CI for the difference in medians. If you
can remember back to when we did our test, you’ll recall that we concluded that obese
people do expend more energy on average than lean ones. This interval is lean minus
obese, so it makes perfect sense that the interval is entirely negative: obese people expend
between 1.12 and 3.98 megajoules more than lean people on average, over 24 hours.

This interval indicates the usual thing: we are sure that there is a difference between
lean and obese people (small P-value), but we are unsure about how big that difference is
(longish confidence interval relative to zero). The remedy is the usual one: take sample
sizes bigger than the rather tiny ones here.

Extra extra: There is usually something funny about bootstrapping medians. Let’s take a
look at the distribution of the column of differences, via a histogram:

energy %>% nest_by(stature) %>%
mutate(sim = list(1:10000)) %>%
unnest(sim) %>%
rowwise() %>%
mutate(my_sample = list(sample(data$expend, replace = TRUE))) %>%
mutate(my_median = median(my_sample)) %>%
group_by(sim) %>%
summarize(med1 = my_median[1], med2 = my_median[2]) %>%
mutate(diff = med1 - med2) %>%
ggplot(aes(x = diff)) + geom_histogram(bins = 40)
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I’ve used more bins than I usually would to show you that this is not close to a normal
distribution, or even any kind of regular unimodal one.4 The problem is that the numerical
values in a bootstrap sample are the same as the ones in the original sample (with possibly
more or less of each) and the median must be one of those (or possibly halfway between
them if the sample size is even). So there are not many possible values for the median of
a bootstrap sample, and thus not very many possible values for the difference between the
sample medians, and therefore you get this kind of “clumpy” bootstap distribution. As far
as getting a confidence interval is concerned, this is not really a problem (you just take the
appropriate percentiles, or in more advanced work with the bootstrap, you adjust things a
bit, such as to use a “bias-corrected and accelerated” interval.5).

Income and education

These data are annual incomes in 2005 of a random sample of 2,584 Americans who were
selected for the National Longitudinal Survey of Youth in 1979 and who had paying jobs
in 2005. The columns are:

• Subject: a subject ID

4If we had done this for the mean, the distribution would probably have been a bit skewed, but would
have had one clear peak and a nice smooth shape.

5The wisdom is that the percentile-based interval we got will generally be too short.
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• Educ: the amount of education (see below)
• Income2005: annual income in 2005
• tr_income: transformed 2005 income (which we will use in our analysis).

The categories in Educ are:

• 012 (less than high school, 0–12 years)
• 12 (completed high school, 12 years)
• 13-15 (some college or university, 13–15 years)
• 16 (completed university, 16 years)
• 16+ (started or completed graduate school, more than 16 years).

The people who collected the data expected to see that more education went with a higher
income on average (or a higher transformed income).

Some of the data, in dataframe incomes, is shown in Figure 8. Summary data of trans-
formed income for each education category are shown in Figure 9.

(13) (3 points) Plots of the transformed incomes are shown in Figure 10. What code was
used to make this Figure?

These are normal quantile plots of transformed income separately for each education cat-
egory, that is, facetted by Educ. (Saying this can help you get partial credit even if your
code is messed up.) Hence:

ggplot(incomes, aes(sample = tr_income)) + stat_qq() + stat_qq_line() +
facet_wrap(~ Educ)
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Two points for a normal quantile plot of the transformed incomes (minus one if you use
the untransformed incomes), and the last point for the correct facet_wrap. 0.5 of the last
point if you do a facet_wrap but somehow mess it up, for example if you add a scales =
"free". Each of the five normal quantile plots is on the same scale, so there is no scales
= "free".

Extra: if you are curious about the transformed incomes, here is a boxplot of the untrans-
formed incomes:

ggplot(incomes, aes(x = Educ, y = Income2005)) + geom_boxplot()
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These are, evidently, very right-skewed, as is very common for incomes. You also see that
when the median income is bigger (for the more highly-educated groups), the spread of
incomes is also bigger. This is the kind of situation in which a transformation is worth
trying. I was expecting a log-transform to be the thing, but I ran Box-Cox (as you can
also do for ANOVA), and got this:

library(MASS, exclude = "select")
boxcox(Income2005 ~ Educ, data = incomes)
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The confidence interval for 𝜆 is very narrow, because we have so much data, and definitely
does not include zero (log) or 0.5 (square root). I figured the best transformation was
something like power 0.25 (fourth root), which is not exactly common (so I didn’t ask you
about it), which is what tr_income actually is:

ggplot(incomes, aes(x = Educ, y = tr_income)) + geom_boxplot()
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These distributions are at least more or less symmetric, though they seem to have a lot
of outliers. The problem with boxplots when you have a lot of data, though, is that they
will appear to exaggerate the number of outliers. Thus, I gave you normal quantile plots
rather than this boxplot, so as to confuse you less.

(14) (2 points) According to Figure 10, what do the distributions of transformed incomes
appear to have in common (that is, what is the same about them)? Why, nonetheless,
is it not necessary to run Mood’s median test here to compare the transformed
incomes, based on the information you have?

The overall picture appears to be that these distributions are long-tailed: they go both up
and down further than you would expect from a normal distribution. One point. “They
have outliers” is not precise enough (or even accurate); “they have upper and lower outliers”
is closer to the mark, but the highest and lowest values are mostly not clearly higher or
lower than the other values, so that the length of tail is a feature of the whole distribution.
Even if you think there are outliers in some of these (say, at the upper end of 16+), there
are a lot more points clearly off the line than just the most extreme ones. So, nothing for
“outliers” and a rather generous 0.5 for “upper and lower outliers”.

The other information you have is the sample sizes in Figure 9. These are all huge (even the
smallest sample is over 100), so we will get a lot of help from the Central Limit Theorem.
The long tails are (relatively speaking) not too bad, and these huge sample sizes are large
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enough to take care of them. Hence the normality is good enough, and we have no need to
go to Mood’s median test. The second point. (The “nonetheless” is a bit of a clue that the
answer will involve something else that you haven’t considered yet, such as sample sizes.)
Half a point for “all the sample sizes are large”, and the other half point for why it helps.
“The sample size is large” is not precise enough: which sample size? There are five of them,
and the total of the five sample sizes is not the relevant consideration for whether things
are normal enough. (On this last point, if the sample sizes were all in the hundreds except
for one that is 5, and that distribution is obviously not normal, then we have a problem,
regardless of the fact that the total sample size is several hundred.)

Extra: if you don’t believe me, pick what looks like the worst one, and get hold of a
bootstrap sampling distribution of the sample mean. I think the worst one is the 16+
group; the one with the smallest sample size, 012, is actually close to normal, so there is
no worry about that one. Hence, grab the 16+ Educ people, and:

incomes %>%
filter(Educ == "16+") -> g16

g16

# A tibble: 374 x 4
Subject Educ Income2005 tr_income
<int> <chr> <int> <dbl>

1 20 16+ 64000 15.9
2 46 16+ 42000 14.3
3 58 16+ 55500 15.3
4 69 16+ 120000 18.6
5 73 16+ 186135 20.8
6 121 16+ 41000 14.2
7 140 16+ 65000 16.0
8 141 16+ 44768 14.5
9 158 16+ 35100 13.7
10 162 16+ 76000 16.6
# i 364 more rows

and then

tibble(sim = 1:10000) %>%
rowwise() %>%
mutate(my_sample = list(sample(g16$tr_income, replace = TRUE))) %>%
mutate(my_mean = mean(my_sample)) %>%
ggplot(aes(sample = my_mean)) + stat_qq() + stat_qq_line()
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As normal as you could ever want. The long-tailedness has all but gone away.

(15) (3 points) Two analyses are shown in Figure 11 and Figure 12. Which analysis is
better? Explain briefly. Your answer should make it clear what each analysis is.

These are a regular ANOVA and a Welch ANOVA (as you can tell from the output). One
rather easy point for recognizing this.

The decision between them is based on whether you think the spreads (of transformed
incomes within groups) are approximately equal.

You have two options to assess this:

• look at the standard deviations in Figure 9, and make a call about whether these are
close to equal. I think they are.

• look at the normal quantile plots in Figure 10 and makes a decision based on the
slopes of the lines there. I don’t see much difference.

One point for considering equality of spreads based on the information you have.

So I would go with the regular ANOVA in Figure 11. I have no objection if you disagree
with me, as long as you do so for a good reason. If, for example, you think the SDs in
Figure 9 are (sufficiently) different, you need to prefer the Welch ANOVA. The third point
for a preferred analysis consistent with what you said about spreads.
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It is very important to learn to answer these kinds of questions concisely: that is, to
answer the question as asked without rambling. In an exam, writing too much means that
the grader may not be able to find the right answer in amongst the irrelevance (bear in
mind that the grader has no more than thirty seconds to read and assess your answer to
a question like this, so it is in your interest to make your answer as easy as possible to
grade). In real life, it means that your reader does not understand and is unable to act
upon what you are saying because you wrote too much that they do not care about.

(16) (3 points) What conclusions do you draw from your chosen analysis, bearing in mind
what the people who collected the data would like to know?

The people who collected the data suspected that more education would go with more
income, so that is what we need to address in the end.

One step at a time, though. The conclusions are exactly the same whichever analysis you
preferred, so:

• the 𝐹 -test says that there are some differences in mean (transformed) income (or that
the mean transformed income is not the same for all levels of education). That’s as
far as that goes. We proceed to the followup analysis (Tukey for aov, Games-Howell
for the Welch ANOVA).

• Mean (transformed) income is different for each pair of education categories except
for 16 (completed university) and 16+ (at least some graduate school). If you look
back at Figure 9, mean income goes steadily up with education, but the smallest
difference is between the last two education categories.

So what you say is something like “these data show that income does indeed increase
with the amount of education, except that there is no significant increase in income
between completing university and attending graduate school”.

Marks: one for a proper conclusion from the 𝐹 -test, one more for some discussion of the
followup results, one more for something sufficiently close to my last sentence that talks
about the relationship between income and education. My comments from the previous
question about conciseness apply here too. If you write too much, do not be surprised if
the grader stops reading at some point.

Extra 1: you might have noticed that Figure 11 and Figure 12 had identical results, and,
indeed, very similar P-values in each case, so that it didn’t matter which one we did.
This (as here) is usually a sign that the spreads were close enough to equal for aov to be
reasonable.

Extra 2: in case you were curious, Mood’s median test gives very similar results again:
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library(smmr)
median_test(incomes, tr_income, Educ)

$grand_median
[1] 13.98311

$table
above

group above below
012 30 106
12 383 637
13-15 320 328
16 271 135
16+ 288 86

$test
what value

1 statistic 2.604786e+02
2 df 4.000000e+00
3 P-value 3.596309e-55

pairwise_median_test(incomes, tr_income, Educ)

# A tibble: 10 x 4
g1 g2 p_value adj_p_value
<chr> <chr> <dbl> <dbl>

1 012 12 6.96e- 4 6.96e- 3
2 012 13-15 9.93e- 9 9.93e- 8
3 012 16 8.62e-17 8.62e-16
4 012 16+ 7.09e-21 7.09e-20
5 12 13-15 5.58e- 7 5.58e- 6
6 12 16 7.11e-22 7.11e-21
7 12 16+ 1.07e-37 1.07e-36
8 13-15 16 2.95e- 9 2.95e- 8
9 13-15 16+ 4.60e-19 4.60e-18
10 16 16+ 2.20e- 1 1 e+ 0

The P-values are a bit bigger than for the other two ANOVAs, but the conclusions are
identical. This is another sign that it doesn’t matter what test you do, so you might as
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well use the most powerful test (aov) since the normality seems OK. (If the P-values had
come out more dissimilar, that would have required us to make a decision about which one
we believed.)

Another thing: since Mood’s median test doesn’t make any assumptions about normality,
what if we had done it on the untransformed incomes?

library(smmr)
median_test(incomes, Income2005, Educ)

$grand_median
[1] 38231

$table
above

group above below
012 30 106
12 383 637
13-15 320 328
16 271 135
16+ 288 86

$test
what value

1 statistic 2.604786e+02
2 df 4.000000e+00
3 P-value 3.596309e-55

pairwise_median_test(incomes, Income2005, Educ)

# A tibble: 10 x 4
g1 g2 p_value adj_p_value
<chr> <chr> <dbl> <dbl>

1 012 12 6.96e- 4 6.96e- 3
2 012 13-15 9.93e- 9 9.93e- 8
3 012 16 8.62e-17 8.62e-16
4 012 16+ 7.09e-21 7.09e-20
5 12 13-15 5.58e- 7 5.58e- 6
6 12 16 7.11e-22 7.11e-21
7 12 16+ 1.07e-37 1.07e-36
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8 13-15 16 2.95e- 9 2.95e- 8
9 13-15 16+ 4.60e-19 4.60e-18
10 16 16+ 2.20e- 1 1 e+ 0

Identical!

All the transformations we consider are “monotonic”, meaning that if one untransformed
value is larger than another, the first transformed value is larger than the second one as
well. The impact that has on Mood’s median test is that the median of the transformed
values is the transformed value of the median of the original values6 (the untransformed
and transformed values are in the same order), and an untransformed value that is above
its grand median will also have a transformed value that is above its grand median. That
is to say, a monotonic transformation will not change the counts of values above and below,
and so will not change any of the P-values in Mood’s median test.

Extra 3: this was an observational study rather than an experiment, so we cannot say that
a larger amount of education causes a larger income. Undoubtedly it does to a certain
degree, but things like parental wealth (or education, or attitudes towards education) will
also have an impact. For example, if your parents are rich, you might be able to get into
Harvard and make a lot of money afterwards, but that came mainly from your parents and
the connections you made at Harvard, not (or not completely) from the fact that you have
four more years of education.

Tidying

The following questions are about tidying data.

(17) (3 points) Figure 13 shows a dataframe d1 and, below it, some code run with this
dataframe. What will be the output of this code?

This:

d1 %>% pivot_longer(a:b, names_to = "trt", values_to = "yield")

# A tibble: 6 x 3
r trt yield

<dbl> <chr> <dbl>
1 1 a 12

6You may need to read that a second time. The idea is that it doesn’t matter whether you transform (all
the values) first and then take the median, or take the median first and then transform it.
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2 1 b 14
3 2 a 13
4 2 b 15
5 3 a 16
6 3 b 17

This is a standard pivot-longer. There is a new column trt that contains the values a and b
(trt is short for “treatment”) and a new column yield that contains the numbers in those
two columns, matched up with their treatment (“yield” is meant to suggest a response
variable). The column r (short for “replicate”) is not named in the pivot_longer, so it
will get repeated as necessary to match the right treatment and yield.

When you’re doing this, you can do a fill-in-the-blank: you know there are going to be new
colums trt and yield, the columns a and b are going away, and the other column not
mentioned, r, will still be in the result. You also know there are going to be 6 rows, and
your job is to make sure that the values of r, trt, and yield still match up (for example,
the values 12, 13, and 16 for yield match up with a, and with values of r of 1, 2, and 3
respectively).

Three points for getting this exactly, or something equivalent to it that matches up the
right values (for example, all the a first in trt, matched up with r-values of 1, 2, and 3 and
yield values of 12, 13, and 16.) 2.5 for this with a small error, in the grader’s judgement.
Two points for getting “more than halfway” to the right answer (in the grader’s judgement),
and one for showing some progress towards the right answer.

I realize that the grader will need to be careful here (see my very last sentence for a grading
tip), since there are several possible right answers. Here is the one I mentioned above, which
is also three points:

# A tibble: 6 x 3
r trt yield

<dbl> <chr> <dbl>
1 1 a 12
2 2 a 13
3 3 a 16
4 1 b 14
5 2 b 15
6 3 b 17

and this, though weird, is also correct, since the right things go together:
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# A tibble: 6 x 3
r trt yield

<dbl> <chr> <dbl>
1 1 a 12
2 2 a 13
3 1 b 14
4 2 b 15
5 3 a 16
6 3 b 17

I am not expecting you to know which order the rows are in, or for that matter the columns.
If you have some way of keeping the right values together, then you are good. Expect the
grader to check that the yield value of 12, 13, and 16 go with trt a and with r of 1, 2,
and 3 in that order, regardless of the arrangement of rows and columns.

(18) (4 points) Figure 14 shows a dataframe d2 and Figure 15 shows a dataframe d3.
What code will rearrange d2 into d3? For full credit, do this in one step.

This is what I actually did:

d2 %>% pivot_longer(everything(), names_to = c(".value", "time"),
names_sep = "_") -> d3

d3

# A tibble: 4 x 3
time x y
<chr> <dbl> <dbl>

1 1 21 11
2 2 22 12
3 1 23 13
4 2 24 14

The thing to recognize is that part of the current column names is used to make the new
column names x and y, so we need to use the special .value to make that happen in one
step. The rest of the old column names (the 1 and the 2) go into the new column time, so
time is named as normal in the names_to as well. The two bits of the old column names
are separated by a _, which is specified in names_sep. Four points.

If you don’t see the .value thing, your first thought might be something like this:
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d2 %>% pivot_longer(everything(), names_to = c("xy", "time"),
names_sep = "_", values_to = "xy_value")

# A tibble: 8 x 3
xy time xy_value
<chr> <chr> <dbl>

1 x 1 21
2 x 2 22
3 y 1 11
4 y 2 12
5 x 1 23
6 x 2 24
7 y 1 13
8 y 2 14

but this is now too long (and you might have trouble thinking of names for those things).
You can recognize that this will be too long because there are eight values to go into what
I called xy_value, and each one of them will be on its own row. So now you have to make
this wider: make columns whose names are in xy and whose values are in xy_value:

d2 %>% pivot_longer(everything(), names_to = c("xy", "time"),
names_sep = "_", values_to = "xy_value") %>%

pivot_wider(names_from = xy, values_from = xy_value)

# A tibble: 2 x 3
time x y
<chr> <list> <list>

1 1 <dbl [2]> <dbl [2]>
2 2 <dbl [2]> <dbl [2]>

This doesn’t work because there are only two distinct values of time, and so there are only
two rows doing it this way (and d3 has four rows). Two points for getting this far, and one
point for saying that this won’t be right (and something about why).

This is another way to three points:

d2 %>% pivot_longer(everything(), names_to = c("xy", "time"), names_sep = "_",
values_to = "xy_value") %>%

pivot_wider(names_from = xy, values_from = xy_value) %>%
unnest_longer(c(x, y))
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# A tibble: 4 x 3
time x y
<chr> <dbl> <dbl>

1 1 21 11
2 1 23 13
3 2 22 12
4 2 24 14

Or this, using unnest on the last line:

d2 %>% pivot_longer(everything(), names_to = c("xy", "time"), names_sep = "_",
values_to = "xy_value") %>%

pivot_wider(names_from = xy, values_from = xy_value) %>%
unnest(c(x, y))

# A tibble: 4 x 3
time x y
<chr> <dbl> <dbl>

1 1 21 11
2 1 23 13
3 2 22 12
4 2 24 14

Another approach that will get you something if you do it right is this:

d2 %>% pivot_longer(everything(), names_to = "thing", values_to = "z") %>%
separate_wider_delim(thing, names = c("xy", "time"), delim = "_") %>%
pivot_wider(names_from = xy, values_from = z)

# A tibble: 2 x 3
time x y
<chr> <list> <list>

1 1 <dbl [2]> <dbl [2]>
2 2 <dbl [2]> <dbl [2]>

One point for this, and a second for explaining what will happen or for trying an unnest.

Minus a half point for small errors.
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For something as potentially complicated as this, you stand to gain a lot by explaining
your process, and not just writing down some apparently random code, because then, even
if you are wrong, the grader can award you some credit for a sensible thought process.

(19) (3 points) Dataframe d4 is shown in Figure 16, and dataframe d5 is shown in Fig-
ure 17. What code will rearrange d4 into d5? Explain briefly how you know your
code will work (hint: how do you know that the rows will be correct?).

This is a straightforward pivot_wider, so just this:

d4 %>% pivot_wider(names_from = g, values_from = x) -> d5
d5

# A tibble: 3 x 3
rep trt1 trt2
<chr> <dbl> <dbl>

1 r1 10 13
2 r2 11 14
3 r3 12 15

Two points.

You know that this will work, because the thing not named in the pivot_wider, namely
rep, will determine what rows things go into (so that there will be three rows labelled r1
through r3, as d5 has).

(20) (3 points) Figure 18 shows a dataframe d6 and some code that uses d6. What will
the output from this code be?

This:

d6 %>% pivot_wider(names_from = v, values_from = w)

# A tibble: 3 x 3
u g1 g2
<chr> <dbl> <dbl>

1 a 10 NA
2 b 14 11
3 c NA 13
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This is one of the not-enough-data ones. A hint for these is to create an empty dataframe
with the columns you know it will have (the values in v) and the rows you know it will
have (the values in u that was not mentioned in the pivot-wider), and put the values in w
in the right places according to their corresponding values for u and v. At the end, you’ll
have two empty cells; put NA in those and you’re done.

The rows and/or columns can be in a different order than shown (since you won’t know for
sure which order they’ll come out, but alphabetical order seems like a good guess). What
matters is that each of the values comes out in the row with its value of u and the column
with the right value from v, with missings where there are no values to go.

The grader will award you a mark according to how close they thought you got to the
above: three points for exactly that, two points for the right structure but some wrong
values, one point for some sort of sensible idea even if the answer was wrong, etc.

Growing cattle

As cattle (cows and bulls) grow, the metabolic clearance rate of growth hormone changes.
In a study, 14 male cattle were weighed, and their metabolic clearance rate was measured.
The data are shown in Figure 19, with the metabolic clearance rates in column mcr. The
dataframe is called growth.

(21) (3 points) A scatterplot of the data is shown in Figure 20. Describe any trend you
see (hint: form, direction, strength).

I see:

• form: a upward-opening curve shape (not linear; “a curved shape” is enough)
• direction: downward trend
• strength: a moderate trend at best (there is a fair bit of scatter among mcr values at

the same weight, or the points are not especially close to whatever trend there is).

A point each for mentioning these. For the strength one, half a point for an assessment
of the strength of relationship, and the other half for some support for that. Specifically,
some sort of reason for your choice of adjective (why “moderate” rather than “weak”, for
example). I don’t really mind what your adjective is, so pretty much anything relevant
will get the third half-point, but you’ll need to support it to get the whole third point.

(22) (2 points) Some analysis is shown in Figure 21 and Figure 22. Which part of this
analysis tells you that that it might be a good idea to add a squared term in body
weight to the regression, and how does it tell you this?
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Figure 22 (the plot of residuals against fitted values). One point for both. This shows a
curved pattern (down and then up again), indicating that the relationship between mcr
and body weight is curved and would be better modelled by adding a squared term in body
weight, rather than a random pattern as would be desirable (the other point for these).

Make sure you’re clear about what this plot is: it is not a scatterplot (that is Figure 20),
but a plot of the residuals on which you were hoping for no pattern, and the existence of
the curved pattern is the reason for the modification of the model.

Extra: in a “simple” regression, with only one 𝑥-variable, you cannot really disentangle
transforming the explanatory side (by adding 𝑥-squared) or transforming the response side
(for example, by taking logs, or using Box-Cox), because the plot of residuals against fitted
is all you have to work with. Hence my framing of this question: I told you what I was
thinking of doing, and it was up to you to come up with a reason why I might do it. (If
I had asked you, on the basis of Figure 22, “what would you do next?”, the right answer
could be either to add the square of body weight or to try a transformation of mcr; either
of these would have been an acceptable thing to try.) In a multiple regression (which
this is not), you have more graphs to work with, and it is then clearer about what to do,
depending on which of the graphs you have a problem with.

(23) (2 points) A regression that includes body weight squared is shown in Figure 23.
What are two ways you can tell that adding the squared term was a good idea?

These:

• the squared term is significant (P-value 0.0218), indicating that it adds to the fit of
the regression over and above the linear term.

• R-squared has increased substantially, from 0.697 to 0.816. (A word like “substan-
tially” needs to be there, because R-squared will increase a little even if the squared
term is worthless.)

A point for each. Only 0.5 for saying that R-squared increases without saying something
about the change being large, or something equivalent.

Extra: When you have repeated observations at the same 𝑥, as we do here (three or four
different observations at the same body_weight), you can figure out whether the “error”
in the regression is due to random error or to something with the model that needs to be
improved. Here, there seems to be quite a bit of random error because the mcr can differ
substantially even among cattle of the same weight. A way of doing this is to subdivide the
error sum of squares into a part that is due to “pure error” (dissimilar mcr values among
cattle of the same body_weight), and the rest of it, which is called “lack of fit”.
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A function that does this is called pureErrorAnova from the alr3 package.7 The models
we fitted are called growth.1 (linear model from Figure 21) and growth.2 (quadratic
model from Figure 23). Let’s try the first of these:8

library(alr3)
pureErrorAnova(growth.1) %>% knitr::kable()

Df Sum Sq Mean Sq F value Pr(>F)
body_weight 1 16634.201 16634.2011 38.14309 0.0001047
Residuals 12 7241.013 603.4178 NA NA
Lack of fit 2 2880.013 1440.0066 3.30201 0.0792380
Pure Error 10 4361.000 436.1000 NA NA

A decent fraction of the error sum of squares from this regression is due to lack of fit (the
rest of it is pure error), and the lack of fit is close to significance (P-value 0.079, which
is small if not quite smaller than 0.05). This hints at the idea that we can improve our
model, which we did by adding the squared term to get model growth.2:

pureErrorAnova(growth.2) %>% knitr::kable()

Df Sum Sq Mean Sq F value Pr(>F)
body_weight 1 16634.20107 16634.20107 38.1430889 0.0001047
I(body_weight^2) 1 2847.58070 2847.58070 6.5296508 0.0286019
Residuals 11 4393.43252 399.40296 NA NA
Lack of fit 1 32.43252 32.43252 0.0743695 0.7906265
Pure Error 10 4361.00000 436.10000 NA NA

Now, all but a tiny fraction of the error sum of squares is due to pure error (because the
quadratic model captures the shape of the trend better). The lack of fit is nowhere near
significant any more. This tells us that with our data, we have little hope of finding a better
model than growth.2 and we should probably end our model-fitting process there.

You might be wondering why we don’t follow a procedure like this in general instead of
looking at residual plots. The reason is that we are not often in the fortunate position of

7When I tried to install this the usual way, I was told that it no longer existed on CRAN, but I found a
way around this. Ask me if you want to know about it.

8The knitr::kable makes a nicer table.
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having replicate observations at the same value of our explanatory variables (or all of them
if there are more than one). Here we were in that position, and so we could test for lack of
fit, but most of the time our explanatory variable values are all, or almost all, different.9

It might be worth investigating why there is so much variability in mcr among cattle of
the same weight — this might be because there is another variable that was not measured,
such as (maybe) age: it might be that two cattle of the same weight but different ages
would have a different metabolic clearance rate.10 But that is complete speculation on my
part, since we have no data to assess it with.

Tadpoles

A tadpole is a small creature that lives in water, and develops into a frog or toad. Can
tadpoles adjust the length of their intestines if they are exposed to a fungus called Bd? The
dataframe tadpoles, shown in Figure 24, contains these variables:

• treatment: Bd if the tadpole was exposed to the fungus, Control if not.
• body: body length in mm
• gut_length: length of the intestine in mm (response)
• mouthpart_damage: measure of damage to the mouth (a larger value indicates more

damage)

The biological question is whether gut_length has an association with treatment.

(24) (2 points) A regression was fitted to predict gut length from the other variables, with
code shown in Figure 25. drop1 output from this regression is shown in Figure 26.
What do you conclude? Explain briefly.

Look at the P-values, the same as you would for the summary output (coming later).
These are 0.028, 0.046, 0.033, all significant, so all of the three explanatory variables add
something to the regression and none of them should be removed. One point for “all
significant” and one for something about what that tells us, something like “we should
keep them all” or “they all add something to the regression”.

9The time when you might have replicated values is in a designed experiment, where you get to control
what values you use. For example, you might be testing the effect of temperature in some industrial
process, and you might choose to look at six different temperatures, and take several observations at
each temperature. That would give you a means of testing for lack of fit. On the other hand, if you
have an observational study, you have to accept the values of your explanatory variable(s) as they come,
and they are likely to be mostly or entirely different from each other.

10The question originally said that the cattle were “of differing ages”, but the ages were not recorded, so I
took that out to make the question less confusing for you.
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If you prefer, look at the three explanatory variables one at a time, and make the conclusion
about each one that it is significant and that it cannot be removed. That’s another route
to two points.

(25) (1 point) Why is it better to use the drop1 output to answer the previous question
than the summary output shown in Figure 27?

The regression contains a categorical explanatory variable treatment, so we should use
drop1 rather than summary. (That’s all you need.)

The reason for this is that the summary output only compares the Control group to the
baseline Bd group, which might not be enough to assess the overall effect of treatment.
In this case, it doesn’t actually matter because comparing Bd to Control is assessing the
effect of treatment: there are only two levels of treatment. So another way to the point
is

It doesn’t actually matter whether we use drop1 or summary because the categorical vari-
able treatment has only two levels.

The consequence of that is that the P-value for treatment is the same, 0.0326, either way.
But saying that it doesn’t matter because the P-values are the same is only 0.5 because it’s
treatment having two levels that makes this happen; you need the insight beyond seeing
that the P-values are the same.

(26) (2 points) What would happen if I ran step on the model tadpoles.1? Explain
briefly.

In one word, nothing!

All the explanatory variables in tadpoles.1 are significant, so step would say that nothing
further can be removed, and end with the same model as it began.

To demonstrate:

step(tadpoles.1, test = "F")

Start: AIC=172.23
gut_length ~ body + mouthpart_damage + treatment

Df Sum of Sq RSS AIC F value Pr(>F)
<none> 11829 172.23
- mouthpart_damage 1 2295.3 14124 175.01 4.4630 0.04570 *
- treatment 1 2658.4 14488 175.70 5.1689 0.03265 *
- body 1 2830.2 14659 176.02 5.5029 0.02797 *
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Call:
lm(formula = gut_length ~ body + mouthpart_damage + treatment,

data = tadpoles)

Coefficients:
(Intercept) body mouthpart_damage treatmentControl

-20.258 6.442 96.839 25.412

Right off the top, the best thing to remove is nothing.

The actual behaviour of step is slightly more complicated than this: it actually uses AIC
rather than P-values to decide what comes out (one of the columns of output is AIC). AIC
is (in this case11) dependent on the error sum of squares of the regression and the number
of explanatory variables in it. The smallest AIC goes with the explanatory variable that
should be removed, at the top of the output; in this case, that smallest AIC goes with
removing nothing, and if you remove any of the others, you’ll make the model fit worse (in
AIC terms). The consequence of using AIC rather than P-values is that quite often step
will end up keeping an explanatory variable whose P-value is around 0.10: not significant
by our usual standards, but not clearly something that should be removed, and step tends
to keep things if in doubt. In this case, though, the three explanatory variables are clearly
significant, and so there’s no way step will get rid of any of them.

(27) (2 points) Interpret the number 6.442 in the Estimate column of Figure 27.

This is an ordinary regression slope (since it is for body which is quantitative), and thus if
body length increases by 1 mm, the intestine length is predicted to increase by 6.44 mm,
all else equal.

Notes:

• the best answer decodes the variable names (rather than saying body and
gut_length) so that your reader knows what you are talking about.

• don’t forget the “all else equal”, or something similar like “if the other variables are
unchanged”.

11You can define AIC for any model, like the ones in STAD29, not just for a regression.
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Since I said “interpret”, meaning “say what it means for the benefit of your reader”, you
need to get both of those two points in my bullets, and you’ll lose a half point for each one
of them you don’t do.

(28) (2 points) Interpret the number 25.412 in the Estimate column of Figure 27.

This is also a “slope”, but of a categorical explanatory variable treatment, so this compares
predicted gut length for the treatment category shown, Control, with the baseline category
Bd. That is, all of this, or something equivalent to it:

“tadpoles in the control group are predicted to have an intestine length 25.4mm longer
than tadpoles who were exposed to the fungus, all else equal.”

Again, “interpret” includes decoding the variable names for your reader. This is work that
you need to be doing.

One point if you get as far as “predicted gut_length is 25.4 bigger for the Control group
compared to the baseline”. 1.5 if you do at least one of these:

• translate the variable names into what they actually are
• say what the baseline actually is
• include the “all else equal”.

It would have been easier if the actual treatment had been something later in the alphabet
than Control, but so it is. This was the effect of interest to the biologists, and since the
effect of treatment is significant (as we found earlier), it says that tadpoles can adjust the
length of their intestines if they are exposed to the fungus, by making the length shorter.

(29) (3 points) A plot is shown in Figure 28. What do you conclude from this plot? Your
answer should make it clear that you know what this plot is.

This is a plot of residuals against fitted values (as you see from the code, or from the axis
labels on the graph). One point.

What we conclude from it is that there is no pattern (the second point), and therefore
that there are no problems indicated (here, at any rate) with the regression, or with the
response variable (the third point). For example, you might say that no transformation
of the response variable is necessary (since in multiple regression, problems on this plot
indicate problems with the response variable).

If you jump straight to the conclusion that there are no problems, you’ll lose the point for
“no pattern”, because it looks as if you are guessing at an answer. At this level, you need
to be clear about how you know that your answer is correct.
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Make it clear that you know this is a plot of residuals against fitted values, because the
normal quantile plot of residuals and plots of residuals against explanatory variables are
also “residual plots”. Also, there is nothing in this Figure that says that the residuals have
a normal distribution (unless you work very hard to see it); this plot is for seeing whether
the residuals have a random pattern relative to the fitted values. (The normal quantile
plot of residuals, not shown here, will tell you whether or not the residuals have a normal
distribution. “Normal” and “random” are describing two different things.)

If you can argue successfully that the points on this plot are not random and what that
implies, then I am also good with that (even though I disagree with your conclusion in
that case).

(30) (3 points) Another plot is shown in Figure 29. What code was used to draw this plot?

This is a (facetted) plot of residuals against two of the explanatory variables (the two
quantitative ones, as it happens). The procedure by which we got these in class was:

• make a dataframe with the original data and the residuals in it. I like to use augment
from the broom package for this, but if you have another way that works, I am also
good with that. See below for one possibility. (You will note from Figure 1 that
broom is already loaded, so you are free to use augment.) If you skip this step, you
have .resid, but you don’t have the original variables.

• pivot it longer so that all the explanatory-variable values you want are in one column,
with the name of the explanatory variable in another column (I called it xname).
(The clue from the graph is that I used the name xval for the column with all the
explanatory-variable values in it.) I’m not picky about you using xname and xval
here; use any names you like, but stay with them the rest of the way. You need
to explicitly name the two explanatory variables you want, because there is also
gut_length and treatment, and neither of them are in this graph. (You could, I
suppose, omit both of those two.)

• plot the residuals against what I called xval, facetted by whatever name you gave
the column I called xname, with scales = "free" (which you can tell because each
subplot has its own 𝑥-scale).

One point for doing each of those; minus a half for each error. (If you make two or more
errors on one of these bullet points, you still get 0.5 as long as you have something right
on that bullet point; on Crowdmark, I used a generic “error” and half-point deduction as
soon as I found something wrong on a bullet point, and didn’t look further if there was
something correct there.)

Thus my code is:
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tadpoles.1 %>% augment(tadpoles) %>% # first bullet point
pivot_longer(c(body, mouthpart_damage), # name these two columns and put inside c

names_to = "xnames", values_to = "xval") %>% # second bullet point
ggplot(aes(x = xval, y = .resid)) + geom_point() +

facet_wrap(~ xnames, scales = "free") # third bullet point
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To satisfy the first bullet point, any way you have of adding the residuals to the original
dataframe is good, such as:

tadpoles %>% mutate(resid = residuals(tadpoles.1))

# A tibble: 27 x 5
treatment body gut_length mouthpart_damage resid
<fct> <dbl> <dbl> <dbl> <dbl>

1 Bd 20.3 191. 0.679 15.3
2 Bd 19.8 143. 0.607 -22.8
3 Bd 19.3 170. 0.75 -6.77
4 Bd 17.8 152. 0.821 -21.8
5 Bd 20.8 171. 0.696 -9.75
6 Bd 17.0 154. 0.571 9.43
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7 Bd 18.1 181. 0.571 29.3
8 Bd 17.0 125. 0.571 -19.3
9 Bd 19.4 173. 0.679 2.26
10 Bd 19.4 207. 0.786 25.9
# i 17 more rows

and then use the name you gave the residuals the rest of the way. (I don’t think I showed
you this, but one of the TAs might have done, so I am good with it.)

This was, in retrospect, a lot of work for three points.

Extra: I didn’t ask for an interpretation of these. My take, for what it’s worth, is that
these are both random as well, and so there are no problems here either. I didn’t ask for
an interpretation because I thought too many people would find a problem, like fanning-in
on the left one or fanning-out on the right one. I don’t think these plots are really evidence
of heteroskedasticity because the place where the variability is greatest also has the most
observations, and these will tend to look more spread out just because there are more of
them (rather than an actual unequal variance).

(31) (1 point) Figure 30 shows another plot from the regression. Why is this one a different
type of plot from the ones in Figure 29?

Only one point, so “because the explanatory variable treatment is categorical” is all you
need. Half a point if you say that the boxplot has a categorical variable without saying
what it is, or if you otherwise nearly get to the answer, in my judgement.

Extra: The idea is that you want to plot the residuals against treatment as well (since this
is one of the explanatory variables), but because treatment is categorical, you cannot use
a scatterplot any more, and instead you need a boxplot.12

If you try to include treatment in the pivot-longer, this happens:

tadpoles.1 %>% augment(tadpoles) %>%
pivot_longer(c(treatment, body, mouthpart_damage),

names_to = "xnames", values_to = "xval")

Error in `pivot_longer()`:
! Can't combine `treatment` <factor<a3ec5>> and `body` <double>.

12Or, perhaps, facetted normal quantile plots.
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because the values that are going into xval are partly categorical (the ones in treatment)
and partly quantitative (the others), and pivot_longer won’t let you make a column out
of things of two different types. Hence, I did Figure 30 separately. (If I had had two
categorical explanatory variables, I would have pivoted them longer too, separately from
the quantitative ones, and there would have been no problem in having all text values in
the xval column.)

(32) (2 points) Does Figure 30 indicate any problem with the regression? Explain briefly.

The residuals for both treatment groups should be normally-distributed around zero. The
residuals for the Bd group are symmetric about a median close to 0 (good), but the Control
group residuals are skewed to the right and have a median less than zero (indicating a
problem.)

Hence, pick out the non-normal distribution (one point) and say why it’s a problem (the
second point). Or, say what you would expect/hope to see (the second point) and how you
don’t (the first point.)

Exponential growth

Exponential growth is defined by the formula

𝑦 = 𝑦0(1 + 𝑟)𝑡

where 𝑦0 is the initial value of some quantity, 𝑟 is the growth rate per unit time (expressed
as a proportion less than 1), 𝑡 is the amount of time, and 𝑦 is the final value of the
quantity.

(33) (3 points) Write an R function called expgrowth that will accept an initial value,
growth rate per unit time, and amount of time (in that order), and will return the
final value. Use the same notation for things as in my formula above.

The function itself is a one-liner; the difficulty here is getting the pieces in the right places.
Use the same names as given in the formula above, so as not to confuse the grader:

expgrowth <- function(y0, r, t) {
y0 * (1 + r)^t

}
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Don’t forget that you need to explicitly multiply the y0 by the 1 + r, and the 1 + r needs
to be in brackets (so that 1 is added to r before raising to the power t and multiplying by
y0).

I’m looking for:

• the first line (minus a half for a small error like getting the inputs in the wrong order)
• implementing the formula (minus a half per error in this, such as not explicitly mul-

tiplying (with *) or raising to a power with ^. The latter you have seen in regression,
and the former you ought to be able to guess as “the same as in a spreadsheet” even
if you don’t remember seeing it in this course.)

• returning the result like this as the last line of the function (minus a half if you have
saved the result and explicitly returned it: I told you in lecture that this is not R
style). Saving the result and “displaying” that result on the last line is fine, like this:

expgrowth <- function(y0, r, t) {
answer <- y0 * (1 + r)^t
answer

}

Standard R practice is to have what you want to return to the outside world, calculated
but not saved, on the last line of your function. R actually does have a return(), but
doing something like this, even though it will work (I gave it a different name):

expgrowth2 <- function(y0, r, t) {
answer <- y0 * (1 + r)^t
return(answer)

}

reveals that you have come from Python (where this is how you do it) and have not learned
what is clearest in R. 2.5 points if you have done this but your answer is otherwise correct.

Extra: when you are developing functions somewhere other than on exams, it’s a good idea
to test them on cases where you know what the answer should be. In this case, thinking
about one time period makes it easy to figure out what will happen. For example, if we
start at 60, and we have a growth rate of 50% over that one time period, the growth should
be 30 (50% of 60), and the final value should be 60 + 30 = 90:

expgrowth(60, 0.50, 1)

[1] 90
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Check.

In a second time period at the same growth rate, the further growth would be 50% of 90,
that is 45, so we are now at 90 + 45 = 135:

expgrowth(60, 0.50, 2)

[1] 135

Extra extra: if you have studied finance, the formula for exponential growth:

𝑦 = 𝑦0(1 + 𝑟)𝑡

might remind you of the formula for growth of money with compound interest:

𝑦 = 𝑦0(1 + 𝑟/𝑛)𝑛𝑡

where now 𝑦0 is the principal, 𝑟 is the interest rate (as a number less than 1), 𝑡 is the
number of years, and 𝑛 is the number of times interest is compounded per year. (My first
formula is really the same as compound interest where interest is compounded once per
year.) The fact that compound interest is like exponential growth is why financial people
like it: your money grows faster and faster. The difference between simple interest and
compound interest is this: with simple interest, the interest is only paid on the principal,
so if you invest $100 at 5% per year, you earn $5 per year every year. With compound
interest, what you make in interest is added to the principal, so that in the first year you
make $5, which is then added to your $100 to make $105, and in the second year you make
5% of $105, which is $5.25. This may not look like much of a difference, but over time it
really adds up. (I am assuming interest compounded once per year.)

(34) (2 points) How would you use your function to find the final value after 60 seconds
of a quantity that grows at 5% per second, starting from an initial value of 20?

Just use (or “call”) your function with the right values in the right order. This is meant
to be a gimme:

expgrowth(20, 0.05, 60)

[1] 373.5837
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You won’t know the answer, of course.

You can also name the inputs, so that this is also good:

expgrowth(y0 = 20, r = 0.05, t = 60)

[1] 373.5837

and if you do that, the inputs can be in any order, such as:

expgrowth(r = 0.05, t = 60, y0 = 20)

[1] 373.5837

You should be able to get full marks for this question even if you had no idea how to write
your function. You know what the structure of the function should be, what its name is,
and (I hope) how to call it, so if you can get the inputs in the right order, or name them,
you will be good.

One of these things is two points; a small error, like putting the unnamed inputs in the
wrong order, is one. (Using 5 instead of 0.05 is only a half point off.) Strictly speaking, if
you write your function in the previous part with the inputs in a different order, and then
use that order here, you should only get penalized once (you have been consistent with
yourself), but you run the risk that the grader will not check back for consistency (they
have a lot of papers to get through).

The function you wrote in the previous part will work for any time units (the growth is
happening every one time unit, whatever it is).

Extra: even though the quantity is not growing very fast, the power of exponential growth
is such that if you watch the quantity long enough, it will eventually become very big.
If you remember back to the early days of COVID: because it was so infectious, we were
worried that the number of cases bad enough to need hospital treatment was going to get
out of hand very quickly, and there was lots of talk about “flattening the curve” (the curve
in question being an exponential growth curve) by staying home and isolating as much as
possible.

(35) (2 points) Exponential growth only makes sense if the initial value is positive. How
would you change your function to give an error if the input value is not positive?
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This is what stopifnot is for (there are other ways, but this is the one we learned in class).
My entire revised function is

expgrowth <- function(y0, r, t) {
stopifnot(y0 > 0)
y0 * (1 + r)^t

}

To verify that it works properly:

expgrowth(20, 0.05, 60)

[1] 373.5837

expgrowth(-20, 0.05, 60)

Error in expgrowth(-20, 0.05, 60): y0 > 0 is not TRUE

When run with the same values as before, the function gives the same answer, but when
run with a negative initial value, the function gives an error as it should.

For you, I asked what change you needed to make, so I want to see two things:

• the stopifnot line (1.5 points if correct)
• where it goes in the revised function (as the first line, or “before the calculation”, or

something similar that makes it clear that you check y0 first: 0.5 points).

Writing out your entire revised function is also good, and therefore 2 points. (This is the
case also if you add the stopifnot to whatever you had in the previous part, even if it
was wrong.)

Something else that works and is consistent with what we learned in class should also
receive credit. We did not use stop in class. If you can concoct something with if that
will work (and is consistent with what we learned in class), that is also good. Printing the
word “error”, and then continuing to run, is only one point, because the whole reason for
using stopifnot is to make your function stop running.

(36) (3 points) What code would use your function, along with some variation on map,
to create a dataframe that contains a column time with values from 0 through 10
(seconds) and the values of a quantity y at each of those times that has initial value
20 and grows by exponential growth at a rate of 5% per second?
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Create a dataframe with the relevant times in it, and then create a new column that uses
the right map function to work out the value of y at each of those times. I told you what
column names to use. Our function returns a decimal number (a dbl), so the right function
is map_dbl:

tibble(time = 0:10) %>%
mutate(y = map_dbl(time, \(t) expgrowth(20, 0.05, t)))

# A tibble: 11 x 2
time y
<int> <dbl>

1 0 20
2 1 21
3 2 22.0
4 3 23.2
5 4 24.3
6 5 25.5
7 6 26.8
8 7 28.1
9 8 29.5
10 9 31.0
11 10 32.6

The name of the input to your anonymous function (the thing inside \()) can be anything,
as long as you use the same thing in the right place in your call to expgrowth.

Another way to create the dataframe of times is

tibble(time = seq(0, 10, 1))

# A tibble: 11 x 1
time
<dbl>

1 0
2 1
3 2
4 3
5 4
6 5
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7 6
8 7
9 8
10 9
11 10

(that is, 0 to 10 in steps of 1.)

One point for making a dataframe of times, and two for getting the mutate (0.5) and
map_dbl (1.5) correct. Minus a half point per error, but you should get something if one
of these things is correct enough even with multiple mistakes.

Extra: because R is “vectorized”, sometimes you can do this kind of thing without using
map. This is actually one of those cases:

tibble(time = 0:10) %>%
mutate(y = expgrowth(20, 0.05, time))

# A tibble: 11 x 2
time y
<int> <dbl>

1 0 20
2 1 21
3 2 22.0
4 3 23.2
5 4 24.3
6 5 25.5
7 6 26.8
8 7 28.1
9 8 29.5
10 9 31.0
11 10 32.6

but this doesn’t answer the question because I asked you to use some kind of map. The
point of this question was to see whether you understood how map works. Only one point
if you do this.

(37) (4 points) Write a function called plot_expgrowth, using your previous work, that:

• takes as input an initial value, growth rate, and maximum time
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• constructs a dataframe that contains times from 0 up to the input maximum time
(in steps of 1 time unit) and values of the quantity at each of those times

• makes a plot of the quantity against time.

This is actually a lot of pretend copying, pasting, and editing of work you’ve already done.
Only the graphing bit is new:

plot_expgrowth <- function(y0, r, max_time) {
tibble(time = 0:max_time) %>%

mutate(y = map_dbl(time, \(t) expgrowth(y0, r, t))) %>%
ggplot(aes(x = time, y = y)) + geom_point()

}

The first two lines of your function are the ones you used to create your dataframe in
question 36 with 10 replaced by max_time, 20 replaced by y0, and 0.05 replaced by r.
(This process of replacing values by names is typical in writing a function). The third
line can optionally join the points by lines or put a smooth trend through them as well as
plotting the points.

Marks:

• 1 for the top line, with inputs clearly labelled
• 2 for adapting your work from the previous part
• 1 for plotting the result suitably (which should be an easy mark to get).

Minus 0.5 per small error, minus 1 if the error is large. I tried to check for consistency
with what you did earlier, and if you haven’t made any more errors, you shouldn’t lose any
more points.

Optionally, you can also keep your stopifnot line from earlier.

If you are doing this in real life, it is a good idea to have functions that are small and
self-contained: that is, they do only one small thing and are as simple as possible. For this
kind of problem, you might do this by first making a function that constructs a dataframe:
that is, does all the calculation of the exponential growth values:

construct_df <- function(y0, r, max_time) {
tibble(time = 0:max_time) %>%

mutate(y = map_dbl(time, \(t) expgrowth(y0, r, t)))
}

and then making a simpler second function that calls this one and then does the plotting:
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plot_expgrowth <- function(y0, r, max_time) {
construct_df(y0, r, max_time) %>%

ggplot(aes(x = time, y = y)) + geom_point()
}

This is easier for you when you come back to it in six months because you can see what
it does: it constructs a dataframe (with, presumably, the exponential growth values in it)
and then plots it. If there are problems with the construction of the dataframe, you now
know to go looking in construct_df to see what is going wrong. I doubt you will think
to do this on an exam, but full credit if you do and get it right.

If you couldn’t do question 36, you can still get full credit here by showing that you know
what to do. Show where your code from question 36 would go and what changes you would
make to it, and then add the graphing piece.

To verify that my function works (this is actually the second version, but they both work
the same):

plot_expgrowth(20, 0.05, 60)

100

200

300

0 20 40 60
time

y

and you see the exponential growth taking hold.
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If you need any more space, use this page, labelling each answer with the question number
it belongs to.

Figures

library(tidyverse)
library(smmr)
library(broom)

Figure 1: Packages

species weight
RT 920
RT 945
CH 330
RT 970
RT 1240
RT 1290
CH 470
CH 335
RT 1150
RT 960
RT 1130
RT 925
RT 1205
RT 1040
CH 335
CH 335

Figure 2: Hawks data file (some lines: the remaining lines are in the same format)
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# A tibble: 3 x 2
species species_name
<chr> <chr>

1 SS Sharp-shinned
2 CH Cooper
3 RT Red-tailed

Figure 3: Dataframe hawk_names. Note that this has a third species that might have been
observed but was not.

t.test(weight ~ species, data = hawks)

Welch Two Sample t-test

data: weight by species
t = -32.215, df = 93.635, p-value < 2.2e-16
alternative hypothesis: true difference in means between group CH and group RT is not equal to 0
95 percent confidence interval:
-715.4837 -632.4050
sample estimates:
mean in group CH mean in group RT

420.4857 1094.4301

Figure 4: Hawks data test
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# A tibble: 22 x 2
expend stature
<dbl> <fct>

1 9.21 obese
2 7.53 lean
3 7.48 lean
4 8.08 lean
5 8.09 lean
6 10.2 lean
7 8.4 lean
8 10.9 lean
9 6.13 lean
10 7.9 lean
11 11.5 obese
12 12.8 obese
13 7.05 lean
14 11.8 obese
15 9.97 obese
16 7.48 lean
17 8.79 obese
18 9.69 obese
19 9.68 obese
20 7.58 lean
21 9.19 obese
22 8.11 lean

Figure 5: Energy usage data (all)
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Figure 6: Energy usage graph

$grand_median
[1] 8.595

$table
above

group above below
lean 2 11
obese 9 0

$test
what value

1 statistic 1.523077e+01
2 df 1.000000e+00
3 P-value 9.514059e-05

Figure 7: Energy usage test
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# A tibble: 20 x 4
Subject Educ Income2005 tr_income
<int> <chr> <int> <dbl>

1 2188 13-15 36000 13.8
2 1436 012 10000 10
3 5307 12 28000 12.9
4 1222 12 38000 14.0
5 2944 12 32000 13.4
6 2809 16+ 15000 11.1
7 1778 13-15 8000 9.46
8 3036 12 52000 15.1
9 3023 12 30000 13.2
10 1148 012 31000 13.3
11 12016 16 150000 19.7
12 3949 13-15 39000 14.1
13 3850 12 32000 13.4
14 2057 13-15 9000 9.74
15 3609 13-15 39000 14.1
16 2333 13-15 85000 17.1
17 612 16 46136 14.7
18 3090 12 31600 13.3
19 4822 12 30775 13.2
20 2852 12 33000 13.5

Figure 8: Income and education data (20 randomly chosen rows)

# A tibble: 5 x 4
Educ n income_mean income_sd
<chr> <int> <dbl> <dbl>

1 012 136 12.2 2.66
2 12 1020 13.2 2.55
3 13-15 648 13.8 2.84
4 16 406 15.3 3.30
5 16+ 374 15.7 3.35

Figure 9: Summary data of transformed income for each education category
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Figure 10: Plots of transformed income
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Df Sum Sq Mean Sq F value Pr(>F)
Educ 4 2902 725.4 87.44 <2e-16 ***
Residuals 2579 21395 8.3
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = tr_income ~ Educ, data = incomes)

$Educ
diff lwr upr p adj

12-012 0.9530098 0.2352841 1.6707356 0.0027287
13-15-012 1.5528225 0.8112558 2.2943892 0.0000001
16-012 3.0464410 2.2674789 3.8254031 0.0000000
16+-012 3.4879841 2.7007045 4.2752637 0.0000000
13-15-12 0.5998126 0.2048468 0.9947785 0.0003375
16-12 2.0934312 1.6320649 2.5547974 0.0000000
16+-12 2.5349742 2.0596996 3.0102489 0.0000000
16-13-15 1.4936185 0.9959743 1.9912627 0.0000000
16+-13-15 1.9351616 1.4245963 2.4457269 0.0000000
16+-16 0.4415431 -0.1219617 1.0050479 0.2039186

Figure 11: Income data, analysis 1



STAC32 Final Exam December 11, 2024 71

One-way analysis of means (not assuming equal variances)

data: tr_income and Educ
F = 77.507, num df = 4.00, denom df = 677.54, p-value < 2.2e-16

Pairwise comparisons using Games-Howell test

data: tr_income by factor(Educ)

012 12 13-15 16
12 0.00111 - - -
13-15 4.9e-08 0.00013 - -
16 7.2e-13 3.9e-10 < 2e-16 -
16+ 8.9e-13 3.6e-10 < 2e-16 0.34356

P value adjustment method: none

alternative hypothesis: two.sided

Figure 12: Income data, analysis 2

# A tibble: 3 x 3
a b r

<dbl> <dbl> <dbl>
1 12 14 1
2 13 15 2
3 16 17 3

d1 %>% pivot_longer(a:b, names_to = "trt", values_to = "yield")

Figure 13: A dataframe d1 and some code
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# A tibble: 2 x 4
x_1 x_2 y_1 y_2

<dbl> <dbl> <dbl> <dbl>
1 21 22 11 12
2 23 24 13 14

Figure 14: Dataframe d2

# A tibble: 4 x 3
time x y
<chr> <dbl> <dbl>

1 1 21 11
2 2 22 12
3 1 23 13
4 2 24 14

Figure 15: Dataframe d3

# A tibble: 6 x 3
rep g x
<chr> <chr> <dbl>

1 r1 trt1 10
2 r2 trt1 11
3 r3 trt1 12
4 r1 trt2 13
5 r2 trt2 14
6 r3 trt2 15

Figure 16: Dataframe d4

# A tibble: 3 x 3
rep trt1 trt2
<chr> <dbl> <dbl>

1 r1 10 13
2 r2 11 14
3 r3 12 15

Figure 17: Dataframe d5
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# A tibble: 4 x 3
u v w
<chr> <chr> <dbl>

1 a g1 10
2 b g2 11
3 c g2 13
4 b g1 14

d6 %>% pivot_wider(names_from = v, values_from = w)

Figure 18: Dataframe d6 and some code using d6

# A tibble: 14 x 2
body_weight mcr

<int> <int>
1 110 235
2 110 198
3 110 173
4 230 174
5 230 149
6 230 124
7 360 115
8 360 130
9 360 102
10 360 95
11 505 122
12 505 112
13 505 98
14 505 96

Figure 19: Cattle growth data
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ggplot(growth, aes(x = body_weight, y = mcr)) + geom_point()
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Figure 20: Cattle growth scatterplot
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growth.1 <- lm(mcr ~ body_weight, data = growth)
summary(growth.1)

Call:
lm(formula = mcr ~ body_weight, data = growth)

Residuals:
Min 1Q Median 3Q Max

-34.553 -13.595 2.138 14.381 48.185

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 212.72093 15.78406 13.48 1.31e-08 ***
body_weight -0.23551 0.04486 -5.25 0.000204 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 24.56 on 12 degrees of freedom
Multiple R-squared: 0.6967, Adjusted R-squared: 0.6714
F-statistic: 27.57 on 1 and 12 DF, p-value: 0.0002043

Figure 21: Cattle growth regression analysis 1
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ggplot(growth.1, aes(x = .fitted, y = .resid)) + geom_point()
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Figure 22: Cattle growth regression plot 1
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growth.2 <- lm(mcr ~ body_weight + I(body_weight^2), data = growth)
summary(growth.2)

Call:
lm(formula = mcr ~ body_weight + I(body_weight^2), data = growth)

Residuals:
Min 1Q Median 3Q Max

-29.89 -10.42 -1.22 13.00 32.12

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.753e+02 2.671e+01 10.305 5.47e-07 ***
body_weight -7.481e-01 1.954e-01 -3.828 0.0028 **
I(body_weight^2) 8.197e-04 3.070e-04 2.670 0.0218 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 19.99 on 11 degrees of freedom
Multiple R-squared: 0.816, Adjusted R-squared: 0.7825
F-statistic: 24.39 on 2 and 11 DF, p-value: 9.051e-05

Figure 23: Cattle growth regression analysis
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treatment body gut_length mouthpart_damage
Bd 20.28 191.40 0.679
Bd 19.75 142.92 0.607
Bd 19.28 169.81 0.750
Bd 17.81 152.18 0.821
Bd 20.79 171.33 0.696
Bd 16.99 153.92 0.571
Bd 18.12 181.08 0.571
Bd 16.95 124.90 0.571
Bd 19.45 173.06 0.679
Bd 19.44 207.01 0.786
Bd 18.32 143.77 0.750
Bd 20.27 220.35 0.714
Bd 18.71 130.00 0.714
Bd 19.05 195.13 0.714
Control 19.46 177.92 0.421
Control 22.62 181.58 0.546
Control 19.42 154.29 0.414
Control 19.55 217.67 0.714
Control 19.69 185.88 0.643
Control 22.40 249.29 0.714
Control 20.78 196.90 0.714
Control 18.78 202.16 0.693
Control 22.48 210.86 0.554
Control 23.18 215.60 0.857
Control 18.59 174.16 0.607
Control 25.92 222.83 0.643
Control 20.38 228.74 0.643

Figure 24: Tadpole data

tadpoles.1 <- lm(gut_length ~ body + mouthpart_damage + treatment,
data = tadpoles)

Figure 25: Tadpole regression
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Df Sum of Sq RSS AIC F value Pr(>F)
NA NA 11829.09 172.2270 NA NA

body 1 2830.183 14659.28 176.0188 5.502892 0.0279750
mouthpart_damage 1 2295.347 14124.44 175.0153 4.462978 0.0457019
treatment 1 2658.389 14487.48 175.7005 5.168863 0.0326488

Figure 26: Tadpole drop1 output

summary(tadpoles.1)

Call:
lm(formula = gut_length ~ body + mouthpart_damage + treatment,

data = tadpoles)

Residuals:
Min 1Q Median 3Q Max

-39.422 -17.701 -6.771 16.338 40.877

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -20.258 53.070 -0.382 0.7062
body 6.442 2.746 2.346 0.0280 *
mouthpart_damage 96.839 45.839 2.113 0.0457 *
treatmentControl 25.412 11.177 2.274 0.0326 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 22.68 on 23 degrees of freedom
Multiple R-squared: 0.5502, Adjusted R-squared: 0.4915
F-statistic: 9.378 on 3 and 23 DF, p-value: 0.0003092

Figure 27: Tadpole summary output
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ggplot(tadpoles.1, aes(x = .fitted, y = .resid)) + geom_point()
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Figure 28: Tadpoles plot 1
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Figure 29: Tadpoles plot 2
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Figure 30: Tadpoles plot 3
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