aov and lmlm rather than aov?aov first:lm
Call:
lm(formula = weight ~ feed, data = pigs)
Residuals:
   Min     1Q Median     3Q    Max 
-3.900 -2.025 -0.570  1.845  5.000 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   60.620      1.404  43.190  < 2e-16 ***
feedfeed2      8.680      1.985   4.373 0.000473 ***
feedfeed3     33.480      1.985  16.867 1.30e-11 ***
feedfeed4     25.620      1.985  12.907 7.11e-10 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.138 on 16 degrees of freedom
Multiple R-squared:  0.9572,    Adjusted R-squared:  0.9491 
F-statistic: 119.1 on 3 and 16 DF,  p-value: 3.72e-11anova:Read the data:
lmdrop1 is right thing to use in a regression with categorical (explanatory) variables in it: “can I remove this categorical variable as a whole?”
Call:
lm(formula = pulse_rate ~ temperature + species, data = crickets)
Residuals:
    Min      1Q  Median      3Q     Max 
-3.0128 -1.1296 -0.3912  0.9650  3.7800 
Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)    -7.21091    2.55094  -2.827  0.00858 ** 
temperature     3.60275    0.09729  37.032  < 2e-16 ***
speciesniveus -10.06529    0.73526 -13.689 6.27e-14 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.786 on 28 degrees of freedom
Multiple R-squared:  0.9896,    Adjusted R-squared:  0.9888 
F-statistic:  1331 on 2 and 28 DF,  p-value: < 2.2e-16speciesniveus says that pulse rate for niveus about 10 lower than that for exclamationis at same temperature (latter species is baseline).